Physics, asked by kirthana09, 1 year ago

A disc is placed on the surface of a water lake of
refractive index ul. A fish is at a depth 'd below the
surface of water. What is the minimum area of the
disc so that the fish is not able to see the world
outside the lake?

Answers

Answered by nirman95
17

Answer:

Given:

A fish is at depth of d from water surface. Refractive Index of water is μ.

To find:

The area of disc such that fish is not an to see anything outside water.

Diagram :

Please see the attached photo to understand better.

Calculation:

Applying Snell's Law :

 \therefore \mu \:  \times  \sin( \theta)  = 1 \times  \sin(90 \degree)

 =  >  \sin( \theta)  =  \dfrac{1}{ \mu}

 =  >  \dfrac{r}{ \sqrt{ {r}^{2} +  {d}^{2}  }  }  =  \dfrac{1}{ \mu}

 =  > \:  {( \mu r) }^{2}  =  {r}^{2}  +  {d}^{2}

 =  >  {r}^{2}  \{ { \mu}^{2}  - 1 \} =  {d}^{2}

 =  >  {r}^{2}  =  \dfrac{ {d}^{2} }{ { \mu}^{2} - 1 }

Now area of circular disc having radius r will be :

 \therefore \: area = \pi {r}^{2}

 =  > area =  \dfrac{\pi {d}^{2} }{ { \mu}^{2} - 1 }

So final answer :

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \large{ \sf{ \blue{ \bold{ area =  \dfrac{\pi {d}^{2} }{ { \mu}^{2} - 1 }}}}}}

Attachments:
Answered by Anonymous
2

  \boxed{ \bold{ \sf{ \orange{ \huge{Answer}}}}}\\  \\  \star \sf \:  \bold{ \red{GIVEN \: :}} \\  \\  \mapsto \sf \: Depth \: of \: fish \: from \: water \: surface = d \\  \\  \mapsto \sf \: Refractive \: index \: of \: water =  \mu{ \tiny{w}} \\  \\  \mapsto \sf \: Refractive \: index \: of \: air =  \mu{ \tiny{a}} \\  \\  \star \sf \:  \bold{ \red{TO \: FIND \: :}} \\  \\  \mapsto \sf \: The \: minimum \: area \: of \: the \: disc \: so \\  \sf \: that \: the \: fish \: is \: not \: able \: to \: see \: the \\  \sf \: world \: outside \: the \: water. \\  \\  \star \sf \:  \bold{ \red{CONCEPT \: :}} \\  \\  \mapsto \sf \: The \: fish \: is \: not \: able \: to \: see \: the \: outside \\  \sf \: in \: the \: case \: of \: critical \: angle \: view. \\  \\  \mapsto \sf \: In \: the \: condition \: of \: critical \: angle \\  \\  \sf \: angle \: of \: incident =  \angle \: i =  \theta{ \tiny{c}} \\  \sf \: angle \: of \: reflection =  \angle \: r = 90 \degree \\  \\  \star \sf \:  \bold{ \red{FORMULA \: DERIVATION \: :}} \\  \\  \mapsto \sf \: Appling \: snells \: law \: at \: water \: surface \\  \\  \mapsto \sf \:  \mu{ \tiny{w}} \times  sin\theta{ \tiny{c}} =  \mu{ \tiny{a}} \times sin90 \degree \\  \\  \mapsto \sf \: sin \theta{ \tiny{c}} =  \frac{1}{ \mu{ \tiny{w}}}  =  \frac{r}{ \sqrt{ {r}^{2} +  {d}^{2}  } }  \\  \\  \sf \therefore \: r =  \frac{d}{ \sqrt{ { (\mu{ \tiny{w}}})^{2}  - 1} }  \\  \\  \mapsto \sf \: Area \: of \: disc =  \pi{ {r}^{2} } \\  \\    \therefore \: \underline{\boxed{ \bold{ \blue{ \sf{Area =  \frac{ \pi{ {d}^{2} }}{ { (\mu{ \tiny{w}}})^{2} - 1 }}}}}}

Attachments:
Similar questions