Math, asked by myadav4801, 1 year ago

A disc of mass 5 kg and radius 50cm rolls on the ground at the rate of 10m/s calculate k. E

Answers

Answered by liza098765432
11

mass \:  = m = 5kg

radius \:  = r = 50cm =  \frac{50}{100}  = 0.5m \\  \\

velocity \:  = v = 10ms  {}^{ - 1}

moment \: of \: inertia \: of \: disk \\  = m.l =  \frac{1}{2} mr {}^{2}  \\  \\  = \frac{1}{2}  \times 5 \times 0.5 \times 0.5 \\  \\  = 0.625kgm {}^{2}  \\  \\ total \: k.e \:  =  \frac{1}{2} lw {}^{2}  +  \frac{1}{2} mv {}^{2}  \\  \\  =  \frac{1}{2} l( \frac{v}{r {}} ) {}^{2}  +  \frac{1}{2} mv {}^{2}   \\  \\  =  \frac{1}{2}  \times 0.625 \times ( \frac{10}{0.5} ) {}^{2}  +  \frac{1}{2}  \times 5 \times 10 {}^{2}  \\  \\  = 125 + 250 \\  \\  = 375 \: j \\  \\  \\  \\ threfore  \: \: total \: k.e \: is \: 375 \: j

✌✌hope it's help you ✌✌

Answered by pinquancaro
2

Total Kinetic energy is 375 J.

Step-by-step explanation:

Given : A disc of mass 5 kg and radius 50 cm rolls on the ground at the rate of 10 m/s.

To find : Calculate K. E ?

Solution :

Mass is m=5 kg

Radius is r=50 cm=0.5 m

Velocity is v=10 m/s

Moment of Inertia of Disk is given by,

M=\frac{1}{2}m r^2

M=\frac{1}{2}\times 5\times (0.5)^2

M=0.625\ kgm^2

Total Kinetic energy is given by,

KE=\frac{1}{2}(M(\frac{v}{r})^2+mv^2)

KE=\frac{1}{2}(0.625(\frac{10}{0.5})^2+(5)(10)^2)

KE=\frac{1}{2}(250+500)

KE=\frac{1}{2}(750)

KE=375\ J

Therefore, Total Kinetic energy is 375 J.

#Learn more

Centre of mass of a uniform disc

https://brainly.in/question/6543608

Similar questions