Math, asked by mallika4vasudev, 8 months ago

A diver launches herself off a springboard. The height of the diver, in meters, above the pool t seconds after launch can be modelled by the following function:
h(t)=5t-10t^{2}+10, t≥0

a) How high is the springboard above the water?
b) Use the model to find the time at which the diver hits the water.
c) Rearrange h(t) into the form A-B(t-C)^2 and give the values of the constants A, B and C.
d) Using your answer to part c or otherwise, find the maximum height of the diver, and the time at which this maximum height is reached.

Answers

Answered by pulakmath007
12

\displaystyle\huge\red{\underline{\underline{Solution}}}

Here The height of the diver above the pool t seconds after launch can be modelled by the function :

 \sf{h(t) = 5t - 10 {t}^{2}  + 10} \:  \:  \: ....(1)

a) The height of the springboard above the water is obtained by putting t = 0 in Equation (1)

Which gives

 \sf{h(0) = 5 \times 0 - 10 \times  {(0)}^{2}  + 10} \:  = 10

Hence the height of the springboard above the water is 10 metre

b) The time at which the diver hits the water is obtained by solving

 \sf{h(t) =0}

 \implies \:  \sf{ 5t - 10 {t}^{2}  + 10}  = 0

 \implies \:  \sf{ 10 {t}^{2}  -  5t - 10\: }  = 0

 \implies \:  \displaystyle \sf{ t = \:  \frac{5  \: \pm \:  \sqrt{25 + (4 \times 10 \times 10)} }{2 \times 10} }

 \implies \displaystyle \sf{ t =  \frac{5  \: \pm \:  \sqrt{425} }{20 } }

Since time ( t ) cannot be negative

So

 \implies \displaystyle \sf{ t  \ne \: \frac{5  \:  -  \:  \sqrt{425} }{20 } }

So

 \implies \displaystyle \sf{ t   =  \: \frac{5   +  \sqrt{425} }{20 } } = 1.28

Hence the time at which the diver hits the water is 1.28 seconds

c) The given equation is

 \sf{h(t) = 5t - 10 {t}^{2}  + 10} \:

 \implies  \sf{h(t) = 5t - 10 {t}^{2}  + 10} \:

 \implies  \sf{h(t) =  - 10 {t}^{2}  +  5t+ 10} \:

  \displaystyle\implies  \sf{h(t) =  - 10( {t}^{2}  -  \frac{t}{2} ) + 10} \:

  \displaystyle\implies  \sf{h(t) =  - 10( {t}^{2}  -  \frac{t}{2} +  \frac{1}{16}  ) + 10  +  \frac{10}{16} } \:

  \displaystyle\implies  \sf{h(t) =  - 10{(t -  \frac{1}{4}) }^{2}   +  \frac{170}{16} } \:

  \displaystyle\implies  \sf{h(t) =\frac{85}{8}  \:   - 10{(t -  \frac{1}{4}) }^{2}   }

Which is of the form

 \sf{h(t) = A-B{(t-C)}^{2} }

 \displaystyle \sf{ \: }Where \:  \:  \:  A  =  \frac{85}{8} \:  ,  \: B =  - 10 \:  , \:  C =  \frac{1}{4}

d) Thus the given equation

 \sf{h(t) = 5t - 10 {t}^{2}  + 10} \:  \:  \:

can be rewritten in the form

  \displaystyle  \sf{h(t) =\frac{85}{8}  \:   - 10{(t -  \frac{1}{4}) }^{2}   }

As we know square of a real number can not be negative

  \displaystyle  \sf{Hence  \: maximum \:  value  \: of  \:  \: h(t) \:  =  h_{max}=\frac{85}{8}   }

This happens when

  \displaystyle  \sf{{t -  \frac{1}{4} } =   0}

 \implies \:   \displaystyle  \sf{{t  =  \frac{1}{4} } }

  \displaystyle  \sf{}  \: Hence \:  the \:  maximum  \: height \:  of \:  the \:  diver \:  =  \frac{85}{8}  \:  \:  \: metre

  \displaystyle  \sf{}  The \:  time \:  at  \: which \:  this \:  maximum \:  height \:  is \:  reached \: is \:  \frac{1}{4}  \:  \:  \: seconds

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

X,Y,Z,W are 4:3:2:1 .Z acquire 1/5 from X. Y acquire 1/5 from X and W equally . Find new ratio and sacrifice ratio

https://brainly.in/question/21221028

Answered by dikshaagarwal4442
2

Answer:

a) The springboard is at a height of 10 unit.

b) The time at which the diver hits the water =  \frac{1 - \sqrt{-15} }{4} unit.

c) h(t)  = \frac{85}{8} - 10(t - \frac{1}{4}    and   A =  \frac{85}{8} ,  B = 10,  C =  \frac{1}{4}

d) The maximum height of the diver = \frac{1}{4} unit

    The time at which this maximum height is reached =   \frac{85}{8} unit.

Step-by-step explanation:

Height, h(t) = 5t - 10t² + 10

(a) When the springboard is above water then the diver launches herself so at that time t = 0.

h(0) = (5×0) - (10×0) + 10 = 10 unit

∴ The springboard is at a height of 10 unit.

(b) When the diver hits the water then there is no distance between water and springboard. So h = 0.

                                         ⇒ 5t - 10t² + 10 = 0

                                         ⇒  5(t - 2t² + 2) = 0

                                         ⇒  t - 2t² + 2 = 0

                                          ⇒ 2t² - t - 2 = 0

                                          ⇒   t = \frac{1 - \sqrt{-15} }{4} (as time can not be negative)

  ∴The time at which the diver hits the water =  \frac{1 - \sqrt{-15} }{4} unit.

(c)  h(t) = 5t - 10t² + 10

           = - 10(t² - \frac{t}{2} ) + 10

           = - 10(t² - \frac{t}{2} + \frac{1}{16}) + 10 + \frac{10}{16}

           =  - 10(t² - 2*\frac{t}{2}*\frac{1}{4} + \frac{1}{4^2}) + 10 + \frac{10}{16}

           = - 10(t - \frac{1}{4} )² + \frac{170}{16}

           = \frac{85}{8} - 10(t - \frac{1}{4} )².............(1)

T given format is,  h(t) = A - B(t-C)²................(2)

Now comparing (1) and (2), A =  \frac{85}{8}

                                             B = 10

                                             C =  \frac{1}{4}

d) From equation(1) we get h(t)  = \frac{85}{8} - 10(t - \frac{1}{4}

  (t - \frac{1}{4} )² = always positive.

  h(t) will be maximum when (t - \frac{1}{4} )² = 0 that means t = \frac{1}{4} unit

   and maximum height = \frac{85}{8} unit.

Similar questions