Math, asked by AyushAryan47, 4 months ago

A doubt in Limits.......​

Attachments:

Answers

Answered by Asterinn
5

 \sf \longrightarrow \lim  \limits_{ \sf x  \rightarrow1}{ \sf \dfrac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}   - 4}{x - 1} } \\  \\  \\ \sf \longrightarrow \lim  \limits_{ \sf x  \rightarrow1}{ \sf \dfrac{(x  - 1) +   ({x}^{2}   - 1)+  ({x}^{3}   - 1)+  ({x}^{4}   - 1)}{x - 1} }\\  \\  \\ \sf \longrightarrow \lim  \limits_{ \sf x  \rightarrow1}{ \sf \dfrac{(x  - 1) +  (x  - 1) ({x}   +  1)+ ( x  - 1)({x}^{2}    + x + 1)+({x}      +  1) ({x}     - 1) ({x}^{2}    + 1)}{x - 1} }\\  \\  \\ \sf \longrightarrow \lim  \limits_{ \sf x  \rightarrow1}{ \sf \dfrac{(x  - 1)  \bigg(1+   ({x}   +  1)+ ({x}^{2}    + x + 1)+({x}      +  1) ({x}^{2}    + 1)\bigg)}{x - 1}  }\\  \\  \\ \sf \longrightarrow \lim  \limits_{ \sf x  \rightarrow1}{ \sf \dfrac{  1+   ({x}   +  1)+ ({x}^{2}    + x + 1)+({x}      +  1) ({x}^{2}    + 1)}{1}  }\\  \\  \\ \sf \longrightarrow { \sf \dfrac{  1+   1+  1+ {1}^{2}    + 1+ 1+({1}      +  1) ({1}^{2}    + 1)}{1}  }\\  \\  \\ \sf \longrightarrow { \sf \dfrac{  1+   1+  1+ 1  + 1+ 1+(2 \times 2 )}{1}  }\\  \\  \\ \sf \longrightarrow { \sf \dfrac{  10}{1}  } = 10

Answer : 10

Answered by Rakhi2121
1

Answer:

That's it my friend.

BTW,from same class.........:)

Attachments:
Similar questions