(a) Evaluate:
Integrate(x² sin ² x )dx
Answers
Answered by
16
maths question
The answer is
=16x3−x24sin2x
−4cos2x
−18sin2x+C
Explanation:
Reminder
cos2x=1−2sin2x
sin
2x=12(1−cos2x)
Integration by parts
∫uv'
=uv−
∫u.v
The integral is
I=∫x2sin2xdx
=12∫x2(1-cos2x)dx
=12
∫x2−12
∫x2cos2xdx
=16x3−12∫x2cos2xdx
Perform the second integral by parts
u=x2
, ⇒
u'=2x
v'=cos2x
⇒
v=12sin2x
So,
∫x2cos2xdx=x22sin2x−∫xsin2xdx
Calculate the third intehral by parts
u=x
⇒
,
u'=1
v'=sin2x
,
⇒
, v=−12cos2x
So,
∫xsin2xdx=−x2cos2x+12
∫cos2xdx=−x2cos2x+14sin2x
Putting it all together
I=16x3−x24sin2x−x4cos2x−18sin2x+C
thanks
hope it helps
please mark as brilliant answer ✌✌✌
Similar questions