Math, asked by mo19001293, 1 month ago

(a) Evaluate log6(216) + [ log(42) - log(6) ] / log(49)
(b) Express (logxa)(logab) as a single logarithm
(c) Find constant A such that log3 x = A log5x for all x > 0.

Answers

Answered by riya4491
0

Answer:

The given expression is

\log 216+[\dfrac{\log42-\log6}{\log 49}]log216+[

log49

log42−log6

]

Using the properties of logarithm we get

\log (8\times 27)+[\dfrac{\log(\frac{42}{6})}{\log 49}]log(8×27)+[

log49

log(

6

42

)

] [\because \log(\frac{a}{b})=\log a-\log b][∵log(

b

a

)=loga−logb]

\log (2^3\cdot 3^3)+[\dfrac{\log 7}{\log (7)^2}]log(2

3

⋅3

3

)+[

log(7)

2

log7

]

\log (2^3)\cdot \log (3^3)+[\dfrac{\log 7}{\log (7)^2}]log(2

3

)⋅log(3

3

)+[

log(7)

2

log7

] [\because \log(ab)=\log a+\log b][∵log(ab)=loga+logb]

3\log 2+3\log 3+[\dfrac{\log 7}{2\log (7)}]3log2+3log3+[

2log(7)

log7

] [\because \log a^b=b\log a][∵loga

b

=bloga]

3(0.301)+3(0.477)+\dfrac{1}{2}3(0.301)+3(0.477)+

2

1

2.8342.834

Therefore, the value of given expression is 2.834.

Similar questions