A farmer has an increase of 12.5% in the output of wheat in his farm every year. This year, he produced 2916 quintals of wheat. What was his annual production of wheat 2 years ago?
Answers
Step-by-step explanation:
</p><p>
Let
Wheat production before 2 years be x quintals
{\mathtt{Production \: after \: 1 \: yeaer = x + x \times \frac{ {\cancel 8}}{ {\cancel 100}}}}Productionafter1yeaer=x+x×
1
00
8
{\implies{\mathtt{\frac{27x}{25}}}}⟹
25
27x
{\mathtt{Wheat \: production \: after \: 2 years \: = \frac{27x}{25} + \frac{27x}{25} \times \frac{ {\cancel 8}}{ {\cancel 100}}}}Wheatproductionafter2years=
25
27x
+
25
27x
×
1
00
8
{:{\implies{\mathtt{ \frac{27x}{25} + \frac{54x}{625}}}}}:⟹
25
27x
+
625
54x
{:{\implies{\tt{ \frac{27x \times 25 + 54 x}{625}}}}}:⟹
625
27x×25+54x
{:{\implies{\tt{ \frac{675 \times + 54 x}{ 625}}}}}:⟹
625
675×+54x
{:{\implies{\tt \frac{729x}{625}}}}}
{\underline{\underline{\LARGE{\bold{A.T.Q}}}}}
A.T.Q
{\implies{\tt{ \frac{{\cancel 729}}{625} ={\cancel 2187}}}}⟹
625
7
29
=
2
187
{\pink{\boxed {\LARGE{\tt{\red{ x =3 \times 625 = 1875 }}}}}}