a farmer moves along a boundry of a squre field of side 10metre in 40 seconds what will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds from his intial position??
Answers
Answer:
the farmer covers the entire boundary of the square field in 40 seconds, the total distance traveled by the farmer in 40 seconds is 4*(10) = 40 meters.
Therefore, the average distance covered by the farmer in one second is: 40m/40 = 1m
Two minutes and 20 seconds can be written as 140 seconds. The total distance traveled by the farmer in this timeframe is: 1 m * 140 = 140m
Since the farmer is moving along the boundary of the square field, the total number of laps completed by the farmer will be: 140m/40 = 3.5 laps
Now, the total displacement of the farmer depends on the initial position. If the initial position of the farmer is at one corner of the field, the terminal position would be at the opposite corner (since the field is square).
In this case, the total displacement of the farmer will be equal to the length of the diagonal line across the opposite corners of the square.
Applying the Pythagoras theorem, the length of the diagonal can be obtained as follows: √(102+102)= √200= 14.14m.
Explanation:
Answer: