Math, asked by rizwishaan7p7nglp, 10 months ago

A field in the in the shape of a trapezium whose purallel
sides are 25 m and 10 m. The non-parallel sides
are 14 and 10m Find the area of the field

Answers

Answered by Anonymous
15

 \large\bf\underline{Given:-}

  • Parellel sides of trapezium are 25m and 10m
  • non parellel sides are 14m and 10m

 \large\bf\underline {To \: find:-}

  • Area of trapezium.

 \huge\bf\underline{Solution:-}

Let PQRS be the given trapezium in which:-

  • PQ = 25m
  • RS = 10m
  • PS = 14m
  • QR = 10m

  • PH is perpendicular to RS

Now,

  • PA = SR

»» AQ = PQ - PA

»» AQ = 25 - 10

»» AQ = 15m

AND,

»» AB = 1/2 × AQ

»» AB = 1/2 × 15

»» AB = 7.5m

IN right angled triangle ∆RAB

  • AR = 14m
  • AB = 7.5

  • BY PYTHAGORAS THEOREM

»» RA² = AB² + RB²

»» 196 = 56.25 + RB²

»» RB² = 196 - 56.25

»» RB² = 139.75

»» RB = √139.75

»» RB = 11.82

So the distance between parellel sides is 11.82m

Area of trapezium = 1/2(sum of || sides )× height

Area of trapezium = 1/2(25+10)×11.82

Area of trapezium = 1/2 × 35 × 11.82

Area of trapezium = 17.5 × 11.82

  • »★ Area of trapezium = 206.85m²
Attachments:
Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{Area \ of \ trapezium \ is \ 157.5 \ m^{2}}

\sf\orange{Given:}

\sf{In \ a \ rectangular \ field,}

\sf{\implies{Parallel \ sides \ are \ 25 \ m \ and \ 10 \ m}}

\sf{\implies{Non-parallel \ sides \ are \ 14 \ m \ 10 \ m}}

\sf\pink{To \ find:}

\sf{Area \ of \ the \ field.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Construction:}

\sf{In \ trapezium \ ABCD,}

\sf{1. \ Draw \ BE \ parallel \ to \ AD.}

\sf{2. \ Draw \ BF \ perpendicular \ to \ CD.}

__________________________________

\sf{In \ \triangle \ ECB,}

\sf{By \ heron's \ formula}

\sf{s=\frac{14+15+10}{2}}

\sf{\therefore{s=\frac{39}{2}=19.5}}

\sf{Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)}}

\sf{=\sqrt{19.5(19.5-14)(19.5-15)(19.5-10)}}

\sf{=\sqrt{19.5\times5.5\times4.5\times9.5}}

\sf{=\sqrt{4584.937}(approx)}

\sf{\therefore{Area \ of \ triangle=67.7 \ m^{2} (approx)}}

\sf{Area \ of \ triangle=\frac{1}{2}\times \ base\times \ height}

\sf{\therefore{67.7=\frac{1}{2}\times15\times \ BF}}

\sf{\therefore{BF=\frac{67.7}{7.5}}}

\sf{\therefore{BF=9 \ m(approx)}}

\boxed{\sf{Area \ of \ trapezium=\frac{1}{2}\times(Sum \ of \ \parallel \ sides)\times \ (Height)}}

\sf{\therefore{Area \ of \ trapezium=\frac{1}{2}\times(10+25)\times9}}

\sf{\therefore{Area \ of \ trapezium=35\times4.5}}

\sf{\therefore{Area \ of \ trapezium=157.5 \ m^{2}}}

\sf\purple{\tt{\therefore{Area \ of \ trapezium \ is \ 157.5 \ m^{2}}}}

Attachments:
Similar questions