Math, asked by Cholebhature10, 8 months ago

A field is in the shape of a trapezium whose parallel sides are 25m and 10m. The non-parallel sides are 14m and 13m. Find the area of field.​

Answers

Answered by Uriyella
7

Given :–

  • A field is in the shape of a trapezium whose parallel sides = 25m and 10m.
  • And the non-parallel sides are 14m and 13m.

To Find :–

  • Area of the field.

Solution :–

Draw BE || AD

But AB || DC [Given]

So,

ABED is a parallelogram.

  • BE = AD = 14m
  • DE = AD = 25m

⟹ DC + CE = 25

⟹ 10 + CE = 25

⟹ CE = 25 – 10

⟹ CE = 15m

Now,

Area of ∆BCE =  \sqrt{s(s - a)(s-b)(s-c)}

Where,

s =  \sf \dfrac{a + b + c}{2}

 \sf \dfrac{13 + 15 + 14}{2}

 \sf \dfrac{42}{2}

Cut the denominator (2) and the numerator (42) by 2, we obtain

⟹ 21

  • s = 21

 \dfrac{1}{2} × b × h =  \sqrt{21(21 - 13)(21 - 15)(21-14)}

 \dfrac{1}{2} × CE × BM =  \sqrt{21(8)(6)(7)}

 \dfrac{1}{2} × 15 × BM =  \sqrt{(3 \times 7) (2 \times 2 \times 2)(2 \times 3) \times 7}

 \dfrac{1}{2} × 15 × BM = 3 × 2 × 2 × 7

⟹ BM =  \dfrac{ 3 \times 7 \times 2 \times 2}{15}

Cut the denominator (3) and the numerator (15) by 3, we obtain

⟹ BM =  \dfrac{56}{5}

⟹ BM = 11.2m

Now, we need to find area of field (trapezium).

Area of trapezium ABCD,

 \dfrac{1}{2} × (sum of parallel lines) × height

 \dfrac{1}{2} × ( AB + DC) ×  \dfrac{56}{5}

 \dfrac{1}{2} × (12 + 10) ×  \dfrac{56}{5}

 \dfrac{1}{2} × 35 ×  \dfrac{56}{5}

Cut the denominator (2) and the numerator (56) by 2, we obtain

⟹ 1 × 35 ×  \dfrac{28}{5}

Now, cut the 35 and the denominator (5) by 5, we obtain

⟹ 28 × 7

⟹ 196

Hence,

The area of the field is 196m².

Answered by jevelin
3

Answer:

Draw a line BE parallel to AD and draw a perpendicular BF on CD

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogram

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13m

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10m

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15m

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBEC

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formula

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBF

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBFBF=16815=11.2m

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBFBF=16815=11.2mArea of the field = 84+112=196m2

Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBFBF=16815=11.2mArea of the field = 84+112=196m2Step-by-step explanation:

Attachments:
Similar questions