Math, asked by malingaray, 5 months ago

a flog staff of height (a- b) stands on the top of
a tower subtends the same angle at the point on
on the horizontal plane through the food of the
tower which are as distant a & b from the tower.
the height of tower is?​

Answers

Answered by ramsmedicine
0

Answer:

Let the angle of elevation of top of the tower subtends an angle α and the angle of elevation of top of the flag staff be β.

Let the height of tower be  

d  

.

⇒tan(α+θ)=  

b

(d+(a−b))

​  

,tan(β+θ)=  

a

(d+(a−b))

​  

,tanα=  

b

d

​  

,tanβ=  

a

d

​  

.

Let (d+(a−b))=p

⇒tan(α+θ)=  

b

p

​  

,tan(β+θ)=  

a

p

​  

,tanα=  

b

d

​  

,tanβ=  

a

d

​  

.

⇒(α+θ)=tan  

−1

 

b

p

​  

,(β+θ)=tan  

−1

 

a

p

​  

 

⇒(α−β)=tan  

−1

 

b

p

​  

−tan  

−1

 

a

p

​  

 

⇒(α−β)=tan  

−1

 

(ab+p  

2

)

(pa−pb)

​  

 

⇒tan(α−β)=  

(ab+p  

2

)

(pa−pb)

​  

 

⇒  

1+tanαtanβ)

(tanα−tanβ)

​  

=  

(ab+p  

2

)

(pa−pb)

​  

 

⇒  

1+  

b

d

​  

×  

b

d

​  

 

b

d

​  

−  

a

d

​  

 

​  

=  

(ab+p  

2

)

(pa−pb)

​  

 

⇒  

(ab+d  

2

)

(ad−bd)

​  

=  

(ab+p  

2

)

(pa−pb)

​  

 

Since a

=b

⇒  

(ab+d  

2

)

d

​  

=  

(ab+p  

2

)

p

​  

 

⇒(abd+p  

2

d)=(abp+d  

2

p)

⇒(ab−pd)(d−p)=0

d=p which is impossible

⇒ab=pd

But p=d+(a−b)

⇒ab=(d+(a−b))×d

⇒d  

2

+(a−b)d−ab=0

⇒d=bor−a

⇒ The height of tower is d=b

Step-by-step explanation:

Similar questions