Physics, asked by tayyabaT, 5 months ago

A flywheel accelerates from rest to an angular
velocity of 7 rad/sec in 7 seconds. Its average
acceleration will be:​

Answers

Answered by Anonymous
61

Given :

  • Initial angular velocity of flywheel \sf\omega_o=0\:rad\:s^{-1}
  • Final angular velocity of flywheel \sf\omega=7\:rad\:s^{-1}
  • Time \sf\:t=7sec

To Find :

Average accelaration of flywheel

Theory :

1) Average Accelaration :

In x- y plane it is the rate at which angular velocity changes with time .

\sf\:Angular\:Accelaration=\dfrac{\triangle\omega}{\triangle\:t}=\dfrac{\triangle\omega_x}{\triangle\:t}\vec{i}+\dfrac{\triangle\omega_y}{\triangle\:t}\vec{j}

2) Equations of Motion for constant angular acceleration:

\bf\:\omega=\omega_o+\alpha\:t

\bf\:\theta=\omega_o\:t+\frac{1}{2}\alpha\:t{}^{2}

\bf\:\omega^{2}=\omega^{2}_o+2\alpha\theta

Solution :

We have to find the Average Accelaration of flywheel

By Using Equations of motion

\rm\:\omega=\omega_o+\alpha\:t

Put the given values

\sf\implies\:7=0+\alpha\:7

\sf\implies\:7=7\alpha

\sf\implies\alpha=\dfrac{7}{7}

\sf\implies\alpha=1rad\:sec^{-2}

Therefore , Average Accelaration of flywheel is 1 rad /s².


amitkumar44481: Perfect :-)
Answered by Anonymous
80

Given:

 \sf{ Initial \:  \omega ( \omega_i ) = 0}

 \sf{Final \:  \omega  \: ( \omega_b) = 7 \: rad/sec}

 \sf{Time = 7 \: sec}

To Find:

Average Acceleration.

Solution:

 \sf{Angular \: acceleration =  \dfrac{ \omega_b  -  \omega_i}{t} }

Substituting the values, we have:

 \sf{Angular \: acceleration =  \dfrac{7 - 0}{7}}

 \sf{Angular \: acceleration = \cancel  \dfrac{7}{7} }

 \sf{Angular \: acceleration = 1 \: rad/  {s}^{2} }

Therefore, Average Angular Acceleration = \green{ \underline{ \boxed{ \rm{ 1 \: rad/ {s}^{2} }}}}

━━━━━━━━━━━━━━━

Similar questions