Physics, asked by roquecarmelv143id, 10 months ago

A flywheel weighing 10 kg and of radius 8cm is revolving at 150rpm. A constant force applied tangentially to its rim reduced its speed to 120 rpm . Find the force

Answers

Answered by shadowsabers03
1

Given,

  • \sf{m=10\ kg}

  • \sf{r=8\ cm=8\times10^{-2}\ m}

  • \sf{\omega_0=150\ rpm=5\pi\ rad\ s^{-1}\quad\quad\left[1\ rpm=\dfrac{\pi}{30}\ rad\ s^{-1}\right]}

  • \sf{\omega=120\ rpm=4\pi\ rad\ s^{-1}}

Angular retardation is given by,

\longrightarrow\sf{\omega=\omega_0+\alpha t}

\longrightarrow\sf{\alpha=\dfrac{\omega-\omega_0}{t}}

\longrightarrow\sf{\alpha=-\dfrac{\pi}{t}\ rad\ s^{-2}}

where t is the time taken for attaining the angular speed \sf{\omega.}

Then the tangential force is,

\longrightarrow\sf{F=mr\alpha}

\longrightarrow\sf{\underline{\underline{F=-\dfrac{0.8\pi}{t}\ N}}}

If \sf{\theta} is the angular displacement then,

\longrightarrow\sf{\underline{\underline{F=-\dfrac{3.6\pi^2}{\theta}\ N}}}

because \theta is given by,

\longrightarrow\sf{\omega^2=(\omega_0)^2+2\alpha\theta}

\longrightarrow\sf{\alpha=\dfrac{(\omega_0)^2-\omega^2}{2\theta}}

\longrightarrow\sf{\alpha=-\dfrac{9\pi^2}{2\theta}}

It is not possible to find the actual answer without time or angular displacement or any more hint.

Similar questions