Physics, asked by YashGupta6931, 9 months ago

A force 3t2+2t+4:acts on a body of mass 2kg.the displacement of the body in first second is

Answers

Answered by Anonymous
14

Solution :

Given:

✏ Mass of body = 2kg

✏ Force = (3\sf{t^2}+2t+4) N

To Find :

✏ Displacement of the body in first second...

Concept:

 \bigstar \: \:   \tt{ \red{F = m \times a}} \\  \\  \bigstar  \sf \:  \:  \blue{v = \int a \: dt} \\  \\  \bigstar \sf \:  \:  \green{d = \int v \: dt}

Calculation:

_________________________________

 \implies \sf \: F = m \times a \\  \\  \implies \sf \: (3 {t}^{2}  + 2t  + 4) = 2 a \\  \\  \implies \:  \boxed{ \tt{ \pink{a =  \dfrac{3}{2}  {t}^{2}  + t + 2}}}

_________________________________

  \displaystyle\mapsto \sf \: v =  \int \: a \: dt \\  \\  \mapsto \sf \: v =  \int \:{ \huge{ ( }}\dfrac{3 {t}^{2} }{2} + t + 2{ \huge{)}} \: dt \\  \\  \mapsto \: \boxed{ \tt{ \green{ v =  \frac{ {t}^{3} }{2 }  +  \frac{ {t}^{2} }{2}  + 2t}}}

_________________________________

 \displaystyle \leadsto \sf \: d =  \int \: v \: dt \\  \\  \leadsto \sf \: d =  \int \:{ \huge{ ( }}\frac{ {t}^{3} }{2}  +  \frac{ {t}^{2} }{2}  + 2t{ \huge{)}} \: dt \\  \\  \leadsto \sf \: d =  \frac{ {t}^{4} }{8}  +  \frac{ {t}^{3} }{6}  +  {t}^{2}  \\  \\  \red{  \sf\dag \: putting \: t = 1s} \\  \\  \leadsto \sf \: d =  \frac{1}{8}  +  \frac{1}{6}  + 1 \\  \\  \leadsto \sf \: d = 0.125 + 0.167 + 1 \\  \\  \leadsto \:  \boxed{ \tt{ \pink{d = 1.292 \: m}}}

_________________________________

Similar questions