Math, asked by hemal50, 9 months ago

A force F = 5i + 2j – 5k acts on a particle whose
position vector ř = į – 2j + k. What is the torque
about the origin?​

Answers

Answered by Anonymous
29

 \mathtt{\huge{\fbox{Solution :)}}}

Given ,

 \star \:   \sf Force \: (f)</p><p></p><p> = 5\hat{ \imath} + 2 \hat{ \jmath} -  \hat{ k}</p><p> \\  \\ \sf \star \:   Position \:  vector \: (r) =  \hat{ \imath} - 2 \hat{ \jmath} +  \hat{ k}

We know that , torque is defined as the cross product of position vector of the force and the force

 \large \mathtt{ \fbox{Torque  = force \times  position \:  vector }}

Thus ,

 \sf \mapsto Torque = (5\hat{ \imath} + 2 \hat{ \jmath} -  \hat{ k}) \times  (\hat{ \imath} - 2 \hat{ \jmath} +  \hat{ k}) \\  \\\sf \mapsto Torque =  \hat{ \imath} \bigg((2 \times 1) -  (( - 2) \times ( - 1) )\bigg) - \hat{ \jmath} \bigg((5 \times 1) - (1 \times ( - 1)) \bigg) +  \hat{ k}\bigg(5 \times ( - 2) - (1  \times 2) \bigg) \\  \\\sf \mapsto Torque = \hat{ \imath} (0) - \hat{ \jmath }(6) + \hat{k} (  - 12) \\  \\ \sf \mapsto Torque = \hat{ \imath} (0) - \hat{ \jmath }(6)  - \hat{k} (  12)

Hence , the torque is   \fbox{\hat{ \imath} (0) - \hat{ \jmath }(6)  - \hat{k} (  12) }

_____________ Keep Smiling

Similar questions