Physics, asked by gangaram8144, 11 months ago

A force F=a+b x acts on a particle in the X-direction, where a and b are constants. Find the work done by this force during a displacement from x=0 to x=d/

Answers

Answered by ShivamKashyap08
10

Answer:

  • The Work done (W) on the particle is a d + ( b d² / 2 )

Given:

  1. The given Relation is F = a + b x
  2. Displacements given x₁ = 0 and x₂ = d

Explanation:

\rule{300}{1.5}

From the relation we know,

\large \bigstar\; \boxed{\tt W = \displaystyle\int\limits^{x_2}_{x_1} \tt F.dx}

\frak{Here}\begin{cases}\text{W Denotes Work Done}\\\text{F Denotes the variable Force}\end{cases}

Now,

\large \boxed{\tt W = \displaystyle\int\limits^{x_2}_{x_1} \tt F.dx}

Substituting the values,

\displaystyle \dashrightarrow\tt W=\displaystyle\int\limits^{x_2}_{x_1} \tt (a+bx).dx\\\\\\\dashrightarrow\tt W=\displaystyle\int\limits^{d}_{0} \tt (a+bx).dx\\\\\\\dashrightarrow\tt W=\displaystyle\int\limits^{d}_{0} \tt a.dx+\displaystyle\int\limits^{d}_{0} \tt bx.dx\\\\\\\dashrightarrow\tt W=\Bigg[a\;x\Bigg]^d_0+\Bigg[\dfrac{b\;x^2}{2}\Bigg]^d_0\\\\\\\dashrightarrow\tt W=\Bigg[a\;(d-0)\Bigg]+\Bigg[\dfrac{b\;(d^2-0^2)}{2}\Bigg]\\\\\\\dashrightarrow\tt W= a\times d+\dfrac{b\times d^2}{2}\\\\\\

\displaystyle\dashrightarrow \large{\underline{\boxed{\red{\tt W=a\;d+\dfrac{b\;d^2}{2}}}}}

The Work done (W) on the particle is a d + ( b d² / 2 ).

\rule{300}{1.5}

Answered by Anonymous
4

\huge \underline {\underline{ \mathfrak{ \green{Ans}wer \colon}}}

As we know that :

\huge{\boxed{\boxed{\sf{W \: = \: \int F. dx}}}}

Where, F = a + dx

Substitute value of F,

\implies {\sf{W \: = \: \int (a \: + \: bx). dx}} \\ \\ \implies {\sf{W \: = \: \int a dx \: + \: \int d bx^2}} \\ \\ \implies \displaystyle {\sf{W \: = \: \bigg[ ax \bigg]_0 ^d\: + \: \bigg[ b \dfrac{x^2}{2}\bigg]_0 ^d}} \\ \\ \implies {\sf{W \: = \: \bigg[ a(d \: - \: 0) \bigg] \: + \: \bigg[ \dfrac{b(d^2 \: - \:0)}{2}\bigg]}} \\ \\ \implies {\sf{W \: = \: ad \: + \: \dfrac{bd^2}{2}}} \\ \\ \implies {\sf{W \: = \: \dfrac{2ad \: + \: bd^2}{2}}} \\ \\ {\LARGE{\boxed{\sf{W \: = \: \dfrac{2ad \: + \: bd^2}{2}}}}}

Similar questions