Physics, asked by sidhuv2411, 9 months ago

An object of mass 4 kg falls from rest through a vertical distance of 20 m and reaches with velocity of 10 (m)//(s) on ground. How much work is done by air friction?

Answers

Answered by kaushik05
69

Given:

Mass of the object = 4kg

Vertical distance (h)=20m

Velocity = 10m/s

To find :

Work done by air friction =?

  \huge{\mathfrak{ \red{solution}}}

As we know that , By work-energy Theorem:

Work done by all forces = Change in kinetic energy

 \rightarrow \: W_mg + W_a =  \frac{1}{2} m {v}^{2}  \\  \ \\  \rightarrow \: W_a =  \frac{1}{2} m {v}^{2}  - W_mg \\  \\  \rightarrow \:  W_a =  \frac{1}{2} m {v}^{2}  - mgh \\  \\  \rightarrow \: W_a =  \frac{1}{2} (4)( {10}^{2} ) - 4(10)(20) \\  \\  \rightarrow \: W_a = 200 - 800 \\  \\  \rightarrow \: W_a =  - 600 \: J \:

Hence ,the work done by air friction is

  \huge\boxed{ \mathfrak{ \bold{ \green{ - 600J}}}}

Answered by Anonymous
60

\huge{\underline{\underline{\red{Answer}}}}

━━━━━━━━━━━

\underline{\mathbb{\green{GIVEN}}}

  • mass= 4kg
  • u=0m/s
  • h=20m
  • v or g=10m/s

━━━━━━━━━━━━

\underline{\mathbb{\green{NEED\:TO\:FIND}}}

》 The Negative Work Done by Air=?

━━━━━━━━━━━

\bf{\underline{\underline{\red{SOLUTION}}}}

In absence of any air friction, the velocity should be-

 =  \sqrt{2gh}  \\  =  \sqrt{2 \times 10 \times 20}m/s  \\  =  \sqrt{20 \times 20} m/s \\  = 20m/s

This should be the ideal velocity in absence of any friction.

Thus

\underline{\boxed{\pink{ideal\:velocity=20m/s}}}

But given Velocity=10m/s

━━━━━━━━

Thus the work done by friction is

 \frac{1}{2} m {v_{ideal}}^{2}  -  \frac{1}{2}m {v_{actual}}^{2}   \\  =  \frac{1}{2}  \times 4 \times ( {20}^{2}  -  {10}^{2} )Joules \\  = 2 \times (20 + 10) \times (20 - 10)Joules \\  = 2 \times 30 \times 10Joules \\  = 600Joules

━━━━━━━━━━━

\bold{\underline{\pink{as\:The\:work\:done\:is}}}

\large{\pink{opppsite\:to\:direction\:of\:motion,}}

\large{\boxed{\underline{\red{Work\:done=(-600)Joules}}}}

Similar questions