Physics, asked by Rithananuskha, 1 year ago

A force F=-k(yi+xj) Vector where k is a positive constant acts on a particle moving in the X-Y plane. Starting from the origin the particle is taken along the positive X-axis to the point (a,0) then parallel to the y-axis to the point (a,a). Then total work done by the force?

Answers

Answered by ujjwalcurry30
139

Answer:

Explanation:

(please assume i to be i cap and j to be j cap)

Given,

Force, F= -K(yi+xj)

As the particle moves in the x-y plane,

the displacement would be, dr= dx i + dy j

now work done is, W=integration( F.dr)

=>W=-K(yi+xj).(dx i + dy j)

=>W=-K(ydx+xdy)

=>W=-Kd(xy). {as ydx+xdy=dxy)

therefore, on integration,

W= -K(xy)

W=-K(a*a).

{limit from (0,0) to (a,a); will give 0 for (0,0) and a^2 for (a,a)}

W=-Ka^2. (answer)

Answered by talasilavijaya
1

Answer:

The total work done by the force is -ka^{2}

Explanation:

Given, Force acting on a particle, \vec F= -k(y\hat i+x\hat j)

Displacement of particle in the x-y plane is d\vec r= dx \hat i + dy \hat j

As the force varying in magnitude and direction,

Work done is defined as force times displacement and is given by,

                         W=\int\limits^{a,a}_{0,0}   \vec Fd\vec r

                              =\int\limits^{a,a}_{0,0}  -k(y\hat i+x\hat j)( dx \hat i + dy \hat j)

                              =-k\int\limits^{a,a}_{0,0}  (ydx+xdy)

                               =-k\int\limits^{a,a}_{0,0}  d(xy)

                               =-k\big|xy\big|\limits^{a,a}_{0,0}

                               =-k(a.a)

                              =-ka^{2}

Therefore, the total work done is -ka^{2}

Similar questions