Physics, asked by niraularohan, 9 months ago

A force of 20N applied to the end of a wire 4m long produces an extension of 0.24 mm. If the diameter of wire is 2mm, calculate the stress on the wire, its strain and value of Young Modulus.​

Answers

Answered by Anonymous
15

\huge\underline{\underline{\bf \orange{Question-}}}

A force of 20N applied to the end of a wire 4m long produces an extension of 0.24 mm. If the diameter of wire is 2mm, calculate the stress on the wire, its strain and value of Young Modulus.

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Force (F) = 20N
  • Wire lenght (L) = 4m
  • Extension (∆L) = 0.24mm or {\sf 0.24×10^{-3}m}
  • Diameter = 2mm therefore Radius (r) = 1mm or {\sf 1×10^{-3}}

\large\underline{\underline{\sf To\:Find:}}

  • Stress
  • Strain
  • Young's Modulus

Stress

\large{\boxed{\bf \blue{Stress=\dfrac{F}{A}}}}

F = Force

A = Area = πr²

\implies{\sf Stress=\dfrac{20}{π×(1×10^{-3})^2}}

\implies{\sf Stress=\dfrac{20}{π×10^{-6}} }

\implies{\bf \red{Stress=\dfrac{20×10^6}{π}N/m^2} }

Strain

\large{\boxed{\bf \blue{Strain=\dfrac{Change\:in\: Lenght}{Original\: Lenght} }}}

\implies{\sf Strain=\dfrac{4}{0.24×10^{-3}}}

\implies{\sf Strain = 0.06×10^{-3}}

\implies{\bf \red{Strain= 6×10^{-5}} }

It is dimensionless

Young's Modulus

\large{\boxed{\bf \blue{Y=\dfrac{FL}{A\triangle L}}}}

\implies{\sf Y = \dfrac{20×4}{π×(10^{-3})^2×0.24×10^{-3}}}

\implies{\sf Y = \dfrac{80}{0.75×10^{-9}} }

\implies{\bf \red{Y = 1.06×10^7\:N/m^2} }

\huge\underline{\underline{\bf \orange{Answer-}}}

Stress = {\bf \red{Stress=\dfrac{20×10^6}{π}N/m^2} }

Strain = {\bf \red{Strain= 6×10^{-5}} }

Young's Modulus = \implies{\bf \red{Y = 1.06×10^7\:N/m^2} }

Answered by harisreeps
3

Answer:

A force of 20N applied to the end of a wire 4m long produces an extension of 0.24 mm. If the diameter of the wire is 2mm. Then

  1. Stress on the wire  =   6.3694\times10^{6}  N/ m^{2}
  2. Strain on the wire   =    0.6 \times10^{-4}  N/m^{2}
  3. Young's modulus    =    10.6156\times10^{10} N/m^{2}

Explanation:

We have the expression for Youg's modulus(Y) as,

Y = \frac{Stress}{Strain}

Stress = \frac{Force( F )}{Area (A)}      ... ( 1 )

 &  Strain = \frac{\Delta L}{L}        ... ( 2 )

That is,

Y=\frac{F L}{A \Delta L}                  ... ( 3 )

Where

F - The stretching force or tension on the wire.

L -  Initial length of the wire

A - Area

ΔL -  Extended length

Given,

F  =  20 N

L = 4 m

Diameter (d)  = 2 mm = 2 \times 10^{-3} m

Radius (r)  = \frac{d}{2}  = 1\times 10^{-3} m

Thus,   A = \pi r^{2}  = 3.14\times( 1\times10^{-3})^{2} = 3.14 \times 10^{-6} m^{2}

ΔL = 0.24 mm = 2.4\times 10^{-4} m

  • Stress on the wire

Substituting the values into the equation(1),

Equation (1) becomes,

\frac{ F }{ A} =  \frac{20}{ 3.14 \times 10^{-6} } = 6.3694\times10^{6}  N/ m^{2}

  • Strain on the wire

Substituting values into equation(2)

\frac{\Delta L}{L}   =  \frac{2.4\times 10^{-4} }{4}= 0.6 \times10^{-4}  N/m^{2}

  • Young's modulus

Equation (3) becomes,

Y  = \frac{\ 6.3694\times10^{6}  }{0.6\times10^{-4} } =10.6156\times10^{10} N/m^{2}

 

Ans :

  1. Stress on the wire  =   6.3694\times10^{6}  N/ m^{2}
  2. Strain on the wire   =    0.6 \times10^{-4}  N/m^{2}
  3. Young's modulus    =    10.6156\times10^{10} N/m^{2}
Similar questions
Math, 9 months ago