Math, asked by Anonymous, 1 day ago

A function f ( x ) given by ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \underbrace { \bf \pmb { f ( x ) = log \bigg\{ \sqrt{x² + 1} - ( x ) \bigg\} }}}}}}}{\bigstar}

Then f ( x ) is :-

1. An even function
2. An odd function
3. Both even and odd function.
4. Neither Even nor odd function.​

Answers

Answered by dollykumari66ranchi
1

Answer:

f(x)=x2−2x+6 is a surjection.

So the range of f(x) will be equal to its codomain.

f(x)=x2−2x+6

f1(x)=2x−2

=2(x−1)

f(x) will be increasing when x⩾1.

∴f(1)=1−2+6

=5

∴B=[5,∞)

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = log[ \sqrt{ {x}^{2}  + 1}  - x]

Now, Consider

\rm :\longmapsto\:f( - x) = log[ \sqrt{ {( - x)}^{2}  + 1}  -( -  x)]

\rm :\longmapsto\:f( - x) = log[ \sqrt{ {x}^{2}  + 1} + x]

can be further rewritten as

\rm :\longmapsto\:f( - x) = log\bigg[ \sqrt{ {x}^{2}  + 1} + x \times \dfrac{ \sqrt{ {x}^{2} + 1 }  - x}{ \sqrt{ {x}^{2}  + 1} - x } \bigg]

We know,

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:f( - x) = log\bigg[\dfrac{ {( \sqrt{ {x}^{2}  + 1}) }^{2}  -  {x}^{2} }{ \sqrt{ {x}^{2}  + 1} - x } \bigg]

\rm :\longmapsto\:f( - x) = log\bigg[\dfrac{{x}^{2} + 1  -  {x}^{2} }{ \sqrt{ {x}^{2}  + 1} - x } \bigg]

\rm :\longmapsto\:f( - x) = log\bigg[\dfrac{1 }{ \sqrt{ {x}^{2}  + 1} - x } \bigg]

\rm :\longmapsto\:f( - x) = log {[ \sqrt{ {x}^{2} + 1 }  - x]}^{ - 1}

\rm :\longmapsto\:f( - x) =  -  \: log {[ \sqrt{ {x}^{2} + 1 }  - x]}

\bf\implies \:f( - x) \:  =  -  \: f(x)

\bf\implies \:f(x) \: is \: odd \: function

\bf :\longmapsto\:f(x) = log[ \sqrt{ {x}^{2}  + 1}  - x] \: is \:an \:  odd \: function

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Definition

Even Function :- A function f(x) is said to be even function iff f(- x) = f(x).

Odd Function :- A function f(x) is said to be odd function iff f(- x) = - f(x).

Periodic Function :- A function f(x) is said to be periodic function of period T iff f(x + T) = f(x).

Similar questions