A function satisfies
Find the value of a such that
I don't understand the method in my book.
For correct methods and answers I will mark as ☆brainliest☆
Explain it well!
Answers
Answer:-
Given:-
Solution:-
• Substituting x = a
Hence,
→
→
→
→
• Now, Substituting x = 1-a
Hence,
→
→
→
→
→
Now,
→
→
→
→
→
→
→
★ \large\boxed{\rm\blue{a = 3}}
a=3
Given:-
\sf 3f(x) + 2f(1-x) = 5x3f(x)+2f(1−x)=5x
\sf f(a)= 13f(a)=13
Solution:-
• Substituting x = a
Hence,
→ \sf 3f(a) + 2f(1-a) = 5a3f(a)+2f(1−a)=5a
→ \sf 3 \times 13 + 2f(1-a) = 5a3×13+2f(1−a)=5a
→ \sf 2f(1-a) = 5-392f(1−a)=5−39
→ \bf\green{f(1-a) = \dfrac{5-39}{2}}f(1−a)=
2
5−39
• Now, Substituting x = 1-a
Hence,
\sf 3f(x) + 2f(1-x) = 5x3f(x)+2f(1−x)=5x
→ \sf 3f(1-a) + 2f(a) = 5(1-a)3f(1−a)+2f(a)=5(1−a)
→ \sf 3f(1-a) + 2 \times 13 = 5 - 5a3f(1−a)+2×13=5−5a
→ \sf 3f(1-a) = 5-5a -263f(1−a)=5−5a−26
→ \sf 3f(1-a) = -5a - 213f(1−a)=−5a−21
→ \bf\green{f(1-a) = \dfrac{-5a-21}{3}}f(1−a)=
3
−5a−21
Now,
→ \sf \dfrac{5a-39}{2} = \dfrac{-5a-21}{3}
2
5a−39
=
3
−5a−21
→ \sf 3(5a-39) = 2(-5a-21)3(5a−39)=2(−5a−21)
→ \sf 15a - 117 = -10a - 4215a−117=−10a−42
→ \sf 15a + 10a = -42 + 11715a+10a=−42+117
→ \sf 25a = 7525a=75
→ \sf a = \dfrac{75}{25}a=
25
75
→ \large\boxed{\green{\bf a = 3}}
a=3
Hope it's helpful for you...