Math, asked by TakenName, 6 months ago

A function satisfies
\sf{3f(x) +2f(1-x)=5x}
Find the value of a such that
\sf{f(a)=13}
I don't understand the method in my book.
For correct methods and answers I will mark as ☆brainliest☆
Explain it well!​


amitnrw: a=3
amitnrw: U must mention ur book method , if u need different method

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
49

Answer:-

\red{\bigstar}\large\boxed{\rm\blue{a = 3}}

Given:-

\sf 3f(x) + 2f(1-x) = 5x

\sf f(a)= 13

Solution:-

• Substituting x = a

Hence,

\sf 3f(a) + 2f(1-a) = 5a

\sf 3 \times 13 + 2f(1-a) = 5a

\sf 2f(1-a)  = 5-39

\bf\green{f(1-a)  = \dfrac{5-39}{2}}

• Now, Substituting x = 1-a

Hence,

\sf 3f(x) + 2f(1-x) = 5x

\sf 3f(1-a) + 2f(a) = 5(1-a)

\sf 3f(1-a) + 2 \times 13 = 5 - 5a

\sf 3f(1-a) = 5-5a -26

\sf 3f(1-a) = -5a - 21

\bf\green{f(1-a) = \dfrac{-5a-21}{3}}

Now,

\sf \dfrac{5a-39}{2} = \dfrac{-5a-21}{3}

\sf 3(5a-39) = 2(-5a-21)

\sf 15a - 117 = -10a - 42

\sf 15a + 10a = -42 + 117

\sf 25a = 75

\sf a = \dfrac{75}{25}

\large\boxed{\green{\bf a = 3}}

Answered by Anonymous
4

★ \large\boxed{\rm\blue{a = 3}}

a=3

Given:-

\sf 3f(x) + 2f(1-x) = 5x3f(x)+2f(1−x)=5x

\sf f(a)= 13f(a)=13

Solution:-

• Substituting x = a

Hence,

→ \sf 3f(a) + 2f(1-a) = 5a3f(a)+2f(1−a)=5a

→ \sf 3 \times 13 + 2f(1-a) = 5a3×13+2f(1−a)=5a

→ \sf 2f(1-a) = 5-392f(1−a)=5−39

→ \bf\green{f(1-a) = \dfrac{5-39}{2}}f(1−a)=

2

5−39

• Now, Substituting x = 1-a

Hence,

\sf 3f(x) + 2f(1-x) = 5x3f(x)+2f(1−x)=5x

→ \sf 3f(1-a) + 2f(a) = 5(1-a)3f(1−a)+2f(a)=5(1−a)

→ \sf 3f(1-a) + 2 \times 13 = 5 - 5a3f(1−a)+2×13=5−5a

→ \sf 3f(1-a) = 5-5a -263f(1−a)=5−5a−26

→ \sf 3f(1-a) = -5a - 213f(1−a)=−5a−21

→ \bf\green{f(1-a) = \dfrac{-5a-21}{3}}f(1−a)=

3

−5a−21

Now,

→ \sf \dfrac{5a-39}{2} = \dfrac{-5a-21}{3}

2

5a−39

=

3

−5a−21

→ \sf 3(5a-39) = 2(-5a-21)3(5a−39)=2(−5a−21)

→ \sf 15a - 117 = -10a - 4215a−117=−10a−42

→ \sf 15a + 10a = -42 + 11715a+10a=−42+117

→ \sf 25a = 7525a=75

→ \sf a = \dfrac{75}{25}a=

25

75

→ \large\boxed{\green{\bf a = 3}}

a=3

Hope it's helpful for you...

Similar questions