Math, asked by abcd098796, 10 months ago

A game of chance consists of spinning an arrow which comes to rest pointing at one of the number 1,2,3,4,5,6,7,8 and these are equally likely outcomes. what is the probability that it will point at.

(1) 8 ?
(2) an odd number ?
(3) a number greater than 2 ?
(4) a number less than 9 ?​

Answers

Answered by Anonymous
83

\sf\pink{refer} \sf\orange{the} \sf\green{given} \sf\red{attachment}

Attachments:
Answered by bobybhagat45
14

Step-by-step explanation:

solution \\  \:  \:  \:  \:  \:  \: the \: disc \: contains \: 8 \: numbers \\ s = (1 \: 2 \: 3 \: 4 \: 5 \: 6 \: 7 \: 8) \\ n(s) = 8 \\ (1)let \: a \: be \: the \: event \: that \: the \: arrow \\ comes \: to \: rest \: at \: 8 \\  \:  \:  \: then \: a \:  = (8) \\ \:  \:  \:  \:  \:  \:  \: n(a) = 1 \\  \:  \:  \:  p(a) =  \frac{n(a)}{n(s)}   =  \frac{1}{8}  \\ 2)let \: b \: be \: the \: event \: that \: the \: arrow \\ comes \: to \: rest \: at \: an \: odd \: number \\ then \: b = (1 \: 3 \: 5 \: 7) \\  \:  \:  \:  \: n(b) = 4 \\ \:  \:  \:  \:   p(b) =   \frac{n(b)}{n(s)}  =  \frac{4}{8}  =  \frac{1}{2}  \\ 3)let \: c \: be \: the \: event \: that \: the \: arrow \:  \\ comes \: to \: rest \: at \: a \: number \: greater \:  \\ than \: 2. \\ then \: c \:  = (3 \: 4 \: 5 \: 6 \: 7 \: 8) \\  \:  \:  \:   \:  \: n(c) = 6 \\ \:  \:  \:  \:  \:   p(c) =  \frac{n(c)}{n(s)} = \frac{6}{8}  =  \frac{3}{4} \\ 4)let \: d \: be \: the \: event \: that \: the \: arrow \\ comes \:at \: a \: number \: less\: than \: 9 \\ then \: d \: (1 \: 2 \: 3 \: 4 \: 5 \: 6 \: 7 \: 8) \\  \:  \: \:  \:   \: n(d) = 8  \\ p(d) =  \frac{n(d)}{n(s)} =  \frac{8}{8}   = 1 \\  \\  \\ (1) \frac{1}{8}  \:  \:  \: (2) \frac{1}{2}  \:  \:  \:  (3) \frac{3}{4}  \:  \:  \: (4)1

HOPE IT HELPS U

PLZ MARK AS A BRAINLIEST

Similar questions