A geometric progression has the second term
as 9 and the fourth term as 81. Find the sum
of the first four terms.
Answers
a1 = first term
r = common ratio
Sn = nth partial sum of a geometric sequence
an = a1 ∙ r ⁿ⁻¹
a2 = a1 ∙ r ²⁻¹ = a1 ∙ r¹ = a1 ∙ r = 9
a4 = a1 ∙ r ⁴⁻¹ = a1 ∙ r³ = 81
a4 / a2 = a1 ∙ r³ / a1 ∙ r = r²
r² = 81 / 9 = 9
r = √ r²
r = ± √ 9
r = ± 3
If:
a2 = a1 ∙ r = 9
then
a1 = 9 / r
a1 = 9 / ± 3
a1 = ± 3
Sn = a1 ∙ ( 1 - rⁿ ) / ( 1 - r )
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
There are 4 possible cases:
1.
a1 = 3 , r = 3
2.
a1 = 3 , r = - 3
3.
a1 = - 3 , r = 3
4.
a1 = - 3 , r = - 3
__________________________________________
Remark:
( - 3 )⁴ = ( - 3 )⁴ = [ ( - 1 ) ∙ 3 ]⁴ = ( - 1 )⁴ ∙ 3⁴ = 1 ∙ 3⁴ =3⁴
so
( - 3 )⁴ = 3⁴
___________________________________________
First case:
a1 = 3 , r = 3
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
S4 = 3 ∙ ( 1 - 3⁴ ) / ( 1 - 3 )
S4 = 3 ∙ ( 1 - 81 ) / ( - 2 )
S4 = 3 ∙ ( - 80 ) / ( - 2 )
S4 = 3 ∙ 40
S4 = 120
Second case:
a1 = 3 , r = - 3
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
S4 = 3 ∙ [ 1 - ( - 3)⁴ ] / [ 1 - ( - 3 ) ]
S4 = 3 ∙ ( 1 -- 3⁴ ) / [ 1 - ( - 3 ) ]
S4 = 3 ∙ ( 1 - 81 ) / ( 1 + 3 )
S4 = 3 ∙ ( - 80 ) / 4
S4 = 3 ∙ ( - 20 )
S4 = - 60
Third case:
a1 = - 3 , r = 3
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
S4 = - 3 ∙ ( 1 - 3⁴ ) / ( 1 - 3 )
S4 = - 3 ∙ ( 1 - 81 ) / ( - 2 )
S4 = - 3 ∙ ( - 80 ) / ( - 2 )
S4 = - 3 ∙ 40
S4 = - 120
Fourth case:
a1 = - 3 , r = - 3
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
S4 = - 3 ∙ [ 1 - ( - 3 )⁴ ] / [ 1 - ( - 3 ) ]
S4 = - 3 ∙ ( 1 - 3⁴ ) / ( 1 + 3 )
S4 = - 3 ∙ ( 1 - 81 ) / 4
S4 = - 3 ∙ ( - 80 ) / 4
S4 = - 3 ∙ ( - 20 )
S4 = 60
So:
S4 = ± 60
OR
S4 = ± 120
Answer:
mark me brainliest
follow me..
Step-by-step explanation:
a1 = first term
r = common ratio
Sn = nth partial sum of a geometric sequence
an = a1 ∙ r ⁿ⁻¹
a2 = a1 ∙ r ²⁻¹ = a1 ∙ r¹ = a1 ∙ r = 9
a4 = a1 ∙ r ⁴⁻¹ = a1 ∙ r³ = 81
a4 / a2 = a1 ∙ r³ / a1 ∙ r = r²
r² = 81 / 9 = 9
r = √ r²
r = ± √ 9
r = ± 3
If:
a2 = a1 ∙ r = 9
then
a1 = 9 / r
a1 = 9 / ± 3
a1 = ± 3
Sn = a1 ∙ ( 1 - rⁿ ) / ( 1 - r )
S4 = a1 ∙ ( 1 - r⁴ ) / ( 1 - r )
There are 4 possible cases:
1.
a1 = 3 , r = 3
2.
a1 = 3 , r = - 3
3.
a1 = - 3 , r = 3
4.
a1 = - 3 , r = - 3
_____________________________________