Physics, asked by maleeha65341, 11 months ago

A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.

Answers

Answered by bhuvna789456
7

The coefficient of volume expansion of mercury is \bold{1.8 \times 10^{-4}} ° \bold{C^{-1}}

Explanation:

At 0°C, glass vessel volume, Vg = 10 \times  10 \times  10 = 1000 cc = mercury volume, V_{Hg}

Let the volume of mercury be V^{\prime}_{Hg} at 10 ° C and that of glass V^{\prime}g.

Around 10°C, extra mercury volume than glass, due to heating,V^{\prime} _{Hg} - V^{\prime}_g = 1.6 cm^3

Thus the temperature changes, ΔT = 10°C

Linear expansion ratio for glass,αg =6.5 \times  10^{-6} °C^{-1}  

Hence the volume expansion coefficient for glass, \gamma g = 3 \times  6.5 \times  10^{-6} ° C^{-1}

Let the volume expansion coefficient of mercury be γHg.

\gamma g = 3 \times 6.5 \times  10^{-6}

V^{\prime}_{H g}=V_{H g}\left(1+Y_{H g} \Delta T\right)

V_{g}^{\prime}=V_{g}\left(1+\mu_{g} \Delta T\right)

Subtract (2) from (1) that we get,

\mathrm{V}_{\mathrm{g}}^{\prime}-\mathrm{V}_{\mathrm{Hg}}^{\prime}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{Hz}}+\mathrm{V}_{\mathrm{B}} \gamma_{\mathrm{E}} \Delta \mathrm{T}-\mathrm{V}_{\mathrm{Hg}} \gamma_{\mathrm{Hg}} \Delta \mathrm{T}

1.6=1000 \times \gamma_{\mathrm{Hg}} \times 10-1000 \times 6.5 \times 3 \times 10-6 \times 10

\gamma_{\mathrm{Hg}}=\frac{1.6+19.5 \times 10-2}{10000}

\gamma_{\mathrm{Hg}}=\frac{1.6+0.195}{10000}

\gamma_{\mathrm{Hg}}=\frac{1.795}{10000}]

\gamma_{\mathrm{Hg}}=1.795 \times 10-4

\gamma_{\mathrm{Hg}} \cong 1.8 \times 10-4^{\circ} C^{-1}

Hence, the volume expansion coefficient for mercury is 1.8 \times 10^{-4} °C^{-1}

Similar questions