Math, asked by lokeshsoni996, 6 months ago

A godown measures 40 m × 25 m × 10 m. Find the maximum number of wooden crates each measuring 1.5 m × 1.25 m × 0.5 m that can be stored in the godown.

PLS GIVE THE CORRECT ANSWER. NO SPAM. I WILL MARK AS BRAINLIEST (WHOSE ANSWER WOULD BE 16000) NO SPAM​

Answers

Answered by CɛƖɛxtríα
63

Answer:

‎ ‎ ‎ ‎ ‎ ‎ ‎Approximately, the maximum number of wooden crates that can be stored in the godown is 10,667.

Explanation:

{\underline{\underline{\bf{Given:}}}}

  • The dimensions of the godown: Length = 40 m, Breadth = 25 m and Height = 10 m.
  • Dimensions of a wooden crate: Length = 1.5 m, Breadth = 1.25 m and Height = 0.5 m.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The maximum number of wooden crates that can be stored in the godown.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Volume}_{[Cuboid]}=lbh\:cu.units}}}

\:\:\:\:\:\:\:\:\:\:\:\sf{\star\:l=length}

\:\:\:\:\:\:\:\:\:\:\:\sf{\star\:b=breadth}

\:\:\:\:\:\:\:\:\:\:\:\sf{\star\:h=height}

{\underline{\underline{\bf{Solution:}}}}

We can find the maximum number of boxed that can be stored in the godown by dividing the volume of a wooden crate from the volume of the godown. As per the given parameters, the shape of both the godown and the wooden crates is cuboid. So, we can find their volumes using the formula 'Volume of Cuboid' :

\leadsto{\sf{\purple{lbh\:cu.units}}}

Godown:-

\:\:\:\:\:\:\:\rightarrowtail{\sf{40\times 25\times 10}}

\:\:\:\:\:\:\:\rightarrowtail{\sf{1000\times 10}}

\:\:\:\:\:\:\:\rightarrowtail{\underline{\bf{10,000\:m^3}}}

Wooden crate:-

\:\:\:\:\:\:\:\rightarrowtail{\sf{1.5\times1.25\times 0.5}}

\:\:\:\:\:\:\:\rightarrowtail{\sf{1.875\times 0.5}}

\:\:\:\:\:\:\:\rightarrowtail{\underline{\bf{0.9375\:m^3}}}

\red\bigstar The maximum number of crates that can be stored in the godown:

\leadsto{\sf{\dfrac{Volume\:of\:godown}{Volume\:of\:a\:crate}}}

\:\:\:\:\:\:\:\implies{\sf{\dfrac{10000}{0.9375}}}

\:\:\:\:\:\:\:\implies{\sf{\dfrac{ \:  \:  \:  \:  \:  \: 10000 \:  \:  \:  \:  \:  \:  \:  }{\cfrac{9375}{10000}}}}

\:\:\:\:\:\:\:\implies{\sf{\dfrac{10000}{9375}\times 10000}}

\:\:\:\:\:\:\:\implies{\sf{\dfrac{(10)^8}{9375}}}

\:\:\:\:\:\:\:\implies{\sf{10,666.66\approx {\underline{\underline{\frak{\red{10,667}}}}}}}

______________________________________________

Answered by Anonymous
12

Answer:

see the above picture

see the above picturehope it helps ☺️

see the above picturehope it helps ☺️it's your second I'd right

Attachments:
Similar questions