Physics, asked by sonusute141, 8 months ago

a grating has 6000 lines per cm . how many order of light of wavelength 4500 A can be seen

Answers

Answered by Anonymous
7

\setlength{\unitlength}{20} \begin{picture}(10,10) \put(1,1){\circle{1}} \put(2,1){\circle{1}} \put(3,1){\circle{1}} \put(4,1){\circle{1}} \put(5,1){\circle{1}} \put(1,2){\circle{1}} \put(2,2){\circle{1}} \put(3,2){\circle{1}} \put(4,2){\circle{1}} \put(5,2){\circle{1}} \put(1,3){\circle{1}} \put(2,3){\circle{1}} \put(4,3){\circle{1}} \put(3,3){\circle{1}} \put(5,3){\circle{1}} \put(1,4){\circle{1}} \put(2,4){\circle{1}} \put(3,4){\circle{1}} \put(4,4){\circle{1}} \put(5,4){\circle{1}} \put(1,5){\circle{1}} \put(2,5){\circle{1}} \put(3,5){\circle{1}} \put(4,5){\circle{1}} \put(5,5){\circle{1}}\multiput(1,1)(1, - 0){5}{\circle*{0.1}}\multiput(1,2)(1,0){5}{\circle*{0.1}} \multiput(1,3)(1,0){5}{\circle*{0.1}}\multiput(1,4)(1,0){5}{\circle*{0.1}}\multiput(1,5)(1,0){5}{\circle*{0.1}}\multiput( - 2,1)(0,1){2}{\vector(1,0){1}}\multiput( - 2,4)(0,1){2}{\vector(1,0){1}}\multiput( - 2,1)( 0,4){2}{\vector(1,0){8}} \multiput( - 2,2)(0, 2){2}{\line(1,0){5}}\put(3,4){\vector(2,1){3.5}} \put(3,2){\vector(2, - 1){3.5}}\put( - 2,2.5){\line(1,0){2}}\put( - 2,3.5){\line(1,0){2}}\qbezier(0,3.5)(0.5,3)( 0,2.5)\put( 0,2.5){\vector( - 1,0){1}}\put( - 2,3.5){\vector(1,0){1}}\multiput(0.5,0.5)(5, - 0){2}{\line(0,1){5}}\multiput(0.5,0.5)(0,5){2}{\line(1,0){5}}\multiput( - 2,1.5)( 0,3){2}{\vector(1,0){2}}\multiput( - 2,1.5)(0,3){2}{\line(1,0){5}}\put(3,1.5){\vector(1, - 1){2}}\put(3,4.5){\vector(1,1){2}}\multiput( - 2,0.75)( 0,4){2}{\vector(1,0){8}}\end{picture}

Answered by arshaarunsl
0

Answer:

When a grating contains 6000 lines per centimeter, we need to determine how many orders of light at a wavelength of 4500 A° there are.

Solution:

The number of orders of light at a wavelength is given by the formula

                   n = 1/N,

where N is equal to 6000 lines per cm and is equal to 4500 A°, or 4500 10-8 cm.

Therefore, n = 1/(6000 4500 10-8)

                     = 1/(2.7 10 1)

                     = 10/2.7

                     = 3.7 4, meaning there are 3 orders of light.

  • Determine the most orders that will be visible when employing light with a 600 nm wavelength and a diffraction grating of 500 lines per millimeter.
  • As a result, there can be a maximum of three orders, and a total of seven photos of the source are displayed (three on each side of a central image)

#SPJ3

Similar questions