Physics, asked by ashasharma55, 10 months ago

A hammer exerts a force of 1.5 kgf on two nails A and B. If the pressure experienced by the nails are in ratio of 1:3, find the ratio of their areas of cross sections.​

Answers

Answered by hahaha3846
2

Answer:

pressure= Force / Area

Area = Force / Pressure

Attachments:
Answered by Anonymous
1

 \bold{For  \: nail  \: A,}

 \bold{force \:  =  \: 1.5N} \\  \bold{area \:  =  \: 2m {m}^{2}  \: to \:  {m}^{2} }  \\  \bold{1m{m}^{2}  \:  =  \: 1mm \:  \times 1mm} \\  \bold{ \:  \:  \:  = 0.001m \times 0.001m} \\  \bold{ \:  \:  \:  = 1 \times  {10}^{ - 6}  {m}^{2} }

 \bold{\: Pressure \:  on  \: nail \:  A  \:  =  \:  \frac{force}{area} } \\  \bold{ \:  \:  \:  \:   \:  \:   \:  \:  \:  =  \frac{1.5}{2 \times 1 \times  {10}^{ - 6} } } \\  \bold{ \:  \:  \:  =  \frac{ \cancel{1.5} \:  \: ³}{2 \times 1 \times  {10}^{ - 6}  \times  \cancel{10} \:  \: ²} } \\   \\  \bold{ \:  \:  \:  =  \: 7.5 \times  {10}^{5}Pa \:  \:  \: ...ans}

 \bold{Pressure \:  on \:  nail \:  B \:  =  \frac{force}{area} } \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \frac{1.5}{6 \times 1 \times  {10}^{ - 6}  } } \\ \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  =  \:  \frac { \cancel{1.5} \:  \: ³}{ \cancel6  \:² \times 1 \times  {10}^{ - 6} \times \cancel{10}\:  ² } } \\  \bold{ =  \: 2.5 \times  {10}^{5}Pa \:  \:  \: ....ans}

hope it helps you...

mark as brainliest plzz ❤️

Similar questions