Math, asked by sfstrl1977mp, 1 year ago

A hemisperical decorative block is shown which is made of 2 solids,a cube with 6 cm and a hemisphere fixed on the top has a diameter of 4.2 cm. Find t.s.a of block and volume of the block.pi = 22/7

Answers

Answered by sajisafi
0

Answer:

TSA of the block =207.72 sq.cms

volume of the block = 235.404 cu. cms

Step-by-step explanation:

cube: a = 6 cm

hemisphere: r = 4.2/2

TSA of the block = open box of cube + CSA of hemisphere

                            = 5a^2 + 2 pi r^2

                            =5 x 6 x 6 + 2 x 22/2 x 4.2/2 x 4.2/2

                            = 180 + 27.72

                            = 207.72 sq. cms

volume of the block = vol. of hemisphere + vol. of cube

                                 = 2/3 pi r^3 + a^3

                                 = 2/3 x 22/7 x 4.2/2 x 4.2/2 x 4.2/2 +6 x 6 x 6

                                 = 235.404  cu. cms                                                                                                                                    

Answered by Anonymous
26

Question

A hemisperical decorative block is shown which is made of 2 solids,a cube with 6 cm and a hemisphere fixed on the top has a diameter of 4.2 cm. Find t.s.a of block and volume of the block.pi = 22/7

\large\boxed{\underline{\mathcal{\red{A}\green{n}\pink{s}\orange{w}\blue{e}\red{r♥♡}}}}

  • TSA of the block =207.72 sq.cms
  • Volume of the block = 235.404 cu. cms

cube: a = 6 cm

hemisphere: r = 4.2/2

TSA of the block = open box of cube + CSA of hemisphere

                            = 5a^2 + 2 pi r^2

                            =5 x 6 x 6 + 2 x 22/2 x 4.2/2 x 4.2/2

                            = 180 + 27.72

                            = 207.72 sq. cms

volume of the block = vol. of hemisphere + vol. of cube

                                 = 2/3 pi r^3 + a^3

                                 = 2/3 x 22/7 x 4.2/2 x 4.2/2 x 4.2/2 +6 x 6 x 6

                                 = 235.404  cu. cms

Thanks..

Similar questions