Math, asked by garima38, 1 year ago

a hollow sphere of internal and external diameter is 4cm and 5cm respectively is melted in to a cone of base diameter is 8cm find height of cone

Answers

Answered by Anonymous
1
Hi friend,

Here is your answer,

              Volume of sphere                   =        Volume of cone
 4/3 * 22/7 *(2.5*2.5*2.5 - 2*2*2)          =         1/3 * 22/7 * 4 * 4 * h
                   10.16                                 =         16.762 * h
                                             h              =          0.61 cm


HOPE THIS HELPED YOU!!
PLS MARK AS THE BRAINLIEST !!
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
0

\huge\sf\pink{Answer}

☞ Height of the cone is 5 cm

\rule{110}1

\huge\sf\blue{Given}

✭ External diameter of the hollow sphere = 6 cm

✭ Internal diameter of the hollow sphere = 4 cm

✭ Radius of cone = 2 cm

\rule{110}1

\huge\sf\gray{To \:Find}

◈ What is the height of the cone?

\rule{110}1

\huge\sf\purple{Steps}

External diameter of the hollow sphere = 6 cm

\sf{ Radius = \dfrac{Diameter}{2} = \dfrac{6}{2}}

\sf{ External \: radius = 3 \: cm}

Internal diameter of the Hollow sphere = 4 cm

\sf{ Internal \: radius = \dfrac{4}{2} }

\sf{ Internal \: radius = 2 \: cm}

Volume of a hollow sphere is given by,

\underline{\boxed{\sf{Volume = \dfrac{4}{3} \pi (R^3 - r^3) }}}

Volume of a cone is given by,

\underline{\boxed{\sf{Volume = \dfrac{1}{3} \pi r^2 h }}}

Let the height be h cm

\bullet\underline{\textsf{As Per the Question}}

\sf{ \dfrac{4}{{3}} {\pi} (R^3 - r^3) = \dfrac{1}{{3}} {\pi} r^2 h }

\sf{ 4(R^3-r^3) = r^2 h }

Substituting the given values,

\sf{ 4(3^2-2^2) = 2^2 \times h }

\sf{4(9-4) = 4 \times h }

\sf{ 4 \times 5 = 4 \times h }

\sf{20 = 4h }

\sf{ h = \dfrac{20}{4} }

\sf{\orange{ h = 5 \: cm }}

\rule{170}3

Similar questions