Math, asked by vprptr, 1 day ago

a+ib/c+id=x+iy, then prove that a²+b²/c²+d²=x²+y²

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:\dfrac{a + ib}{c + id}  = x + iy

Taking modulus on both sides,

\rm :\longmapsto\:\bigg |\dfrac{a + ib}{c + id}\bigg | =  |x + iy|

We know,

\boxed{ \tt{ \:  \bigg| \frac{z_1}{z_2} \bigg|  =  \frac{ |z_1| }{ |z_2| } \: }}

and

\boxed{ \tt{ \: z = a + ib \:  \: \rm \implies\: |z|  =  \sqrt{ {a}^{2}  +  {b}^{2} } \: }}

So, using these results, we get

\rm :\longmapsto\:\dfrac{ |a + ib| }{ |c + id| } =  \sqrt{ {x}^{2} +  {y}^{2} }

\rm :\longmapsto\:\dfrac{ \sqrt{ {a}^{2}  +  {b}^{2}}}{ \sqrt{ {c}^{2}+{d}^{2}}}  =  \sqrt{ {x}^{2}+{y}^{2}}

On squaring both sides, we get

\bf\implies \:\dfrac{ {a}^{2}  +  {b}^{2} }{ {c}^{2}  +  {d}^{2} }  =  {x}^{2} +  {y}^{2}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \boxed{ \tt{ \: z \: \overline{z} =  { |z| }^{2}  \: }}

\boxed{ \tt{ \:  |z| \:  =  \:  |\overline{z}|  \: }}

\boxed{ \tt{ \: \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1  \times  z_2} = \overline{z_1}  \times  \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1   -   z_2} = \overline{z_1}   -   \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1 \div z_2} = \overline{z_1} \div \overline{z_2} \: }}

Similar questions