(a) If a+b+c=9, a2 + b2 + c2 = 51, find ab + bc + ca
Answers
Answered by
5
Answer:
Mark me as brainliest because it takes time to right in Mathematics
Step-by-step explanation:
Since (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)
∴ (9)2 = a2 + b2 + c2 + 2(15)
81 = a2 + b2 + c2 + 30
∴ a2 + b2 + c2 = 81 – 30 = 51
Answered by
0
The value of (ab+ bc+ ca) = 15
Given:
If a + b + c = 9 and a² + b² + c² = 51
To find:
Find the value of (ab + bc + ca)
Solution:
Given that a + b + c = 9 and a² + b² + c² = 51
From algebraic formula (a + b + c)² = a²+ b²+ c²+ 2(ab + bc + ca)
⇒ (9)² = 51 + 2(ab + bc + ca)
⇒ 81 = 51 + 2(ab + bc + ca) [ ∵ 9² = 81 ]
⇒ 2(ab + bc + ca) = 81 - 51
⇒ 2(ab + bc + ca) = 30
⇒ ab + bc + ca = 15
Therefore, the value of (ab+ bc+ ca) = 15
#SPJ2
Similar questions