a ladder 10m long reaches a window 8m above the ground. find the distance of the foot of the ladder from base of the wall.
Answers
Answered by
5
Height of the ladder=10m (hypotenuse)
Length of the window=8m (perpendicular)
So we need to find the base
(H) ^ =(p)^ + (b) ^
(10*10) = (8*8) + (B)^
100= 64 + (B)^
100 - 64 =(B)^
36 = (B) ^
6m =base (square goes for square root)
So the distance of the foot of the ladder from the base of the wall is 6 m
Read more on Brainly.in - https://brainly.in/question/2755709#readmore
Length of the window=8m (perpendicular)
So we need to find the base
(H) ^ =(p)^ + (b) ^
(10*10) = (8*8) + (B)^
100= 64 + (B)^
100 - 64 =(B)^
36 = (B) ^
6m =base (square goes for square root)
So the distance of the foot of the ladder from the base of the wall is 6 m
Read more on Brainly.in - https://brainly.in/question/2755709#readmore
Answered by
62
Answer:
Distance of the foot of the ladder from base of the wall = 6cm.
Step-by-step explanation:
Given:
- Length of the ladder =10m
- Distance between window and the ground =8m
Need to find:
- Distance of the foot of the ladder from base of the wall
Explanation:
Let AB be the ladder and BC be the wall with the window at B.
As it given that,
AB =10m
BC =8m
By applying Pythagoras theorem,
We get:
=> AB² = BC²+CA²
=> 10² = 8²+CA²
=> 100 = 64+CA²
=> 100-64 = CA²
=> 36 = CA²
=> √36 = CA
=> 6m = CA
Hence,Distance of the foot of the ladder from base of the wall is 6m.
Similar questions