Math, asked by samiksha67, 1 year ago

a ladder is placed 5ft away from a house the ladder comes up to 12ft on the side of the house how long is the ladder

Answers

Answered by Anonymous
9

Using P.T

AC² = AB² +BC²

∴ AC =  √ 5² + 12² =  13  FT

OK



samiksha67: thanks a lot
samiksha67: yes
Answered by BrainlyConqueror0901
23

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:ladder=13}\:ft}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ladder is placed 5ft away from a house the ladder comes up to 12ft on the side of the house.

• We have to find length of ladder.

 \green{\underline \bold{Given :}} \\ : \implies \text{Distance\:between\:wall\:and\:foot\:of\: ladder =5\:ft} \\ \\ : \implies\text{Height\:of\:wall=12\:ft}\\ \\ \red{\underline \bold{To \: Find:}} \\ : \implies\text{Length\:of\: ladder=?}

• Accroding to given question :

 \bold{In \: \triangle \: ABC} \\ : \implies {h}^{2} = {p}^{2} + {b}^{2} \: \: \: \: \: \: \: \: \text{(by \: pythagoras \: theorem}) \\ \\ : \implies {(AC)}^{2} = {12}^{2} + 5^{2} \\ \\ : \implies (AC)^{2} =144+25\\ \\ : \implies {(AC)}^{2} =169\\ \\ : \implies AC= \sqrt{169} \\ \\ \green{: \implies \text{AC=13}\:ft}

Similar questions