Math, asked by guptaananya2005, 3 months ago

A lamp is 50 ft. above the ground. If the ball is dropped from same height from a point 30 ft. away from the light pole, the ball falls at distance , s=16{t}^{2}ft. in 't' seconds, then how fast is the shadow of the ball moving along the ground ½ second later ?​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

A lamp is 50 ft. above the ground. If the ball is dropped from same height from a point 30 ft. away from the light pole, the ball falls at distance , s=16{t}^{2}ft. in 't' seconds.

Let assume that A be the required position of ball which is 30 ft. away from light pole and ball falls at a distance 16t^2 ft.

So,

At time t, ball drops 16t^2 ft distance, therefore

\rm :\longmapsto\:y = 50 -  {16t}^{2}

When t = 0.5 sec,

\rm :\longmapsto\:y = 50 -  {16(0.5)}^{2}  = 50 - 16 \times  \dfrac{1}{4} = 50 - 4 = 46 \: ft

➢ Let assume that light pole be represented as BC and length of shadow x be DE.

➢ Let further assume that angle BEC = k.

So,

\red{\rm :\longmapsto\:In \:  \triangle \: EAD}

\rm :\longmapsto\:tan \: k = \dfrac{AD}{ED}

\rm :\longmapsto\:tan \: k = \dfrac{50 -  16{t}^{2} }{x}  -  -  - (1)

Also,

 \red{\rm :\longmapsto\:In  \: \triangle \: EBC}

\rm :\longmapsto\:tan \: k = \dfrac{BC}{EC}

\rm :\longmapsto\:tan \: k = \dfrac{50}{30 + x}  -  -  -  - (2)

On equating equation (1) and (2), we get

\rm :\longmapsto\:\dfrac{50 -  16{t}^{2} }{x}  = \dfrac{50}{30 + x}

\rm :\longmapsto\:50 -  16{t}^{2}  = \dfrac{50x}{x + 30}  -  -  -  - (1)

When t = 0.5 sec,

\rm :\longmapsto\:50 -  16 \times {0.5}^{2}  = \dfrac{50x}{x + 30}

\rm :\longmapsto\:50 -  4  = \dfrac{50x}{x + 30}

\rm :\longmapsto\:46  = \dfrac{50x}{x + 30}

\rm :\longmapsto\:46x + 1380 = 50x

\rm :\longmapsto\:1380 = 50x - 46x

\rm :\longmapsto\:1380 = 4x

\bf\implies \:x = 345 \: ft

Now, from equation (1), we have

\rm :\longmapsto\:50 -  16{t}^{2}  = \dfrac{50x}{x + 30}

\rm :\longmapsto\:50 -  16{t}^{2}  = 50\bigg[\dfrac{x}{x + 30} \bigg]

\rm :\longmapsto\:50 -  16{t}^{2}  = 50\bigg[\dfrac{x + 30 - 30}{x + 30} \bigg]

\rm :\longmapsto\:50 -  16{t}^{2}  = 50\bigg[1 - \dfrac{30}{x + 30} \bigg]

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}(50 -  16{t}^{2} ) = 50\dfrac{d}{dt}\bigg[1 - \dfrac{30}{x + 30} \bigg]

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

 \boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n}  = n {x}^{n - 1} }}

 \boxed{ \bf{ \: \dfrac{d}{dx} \frac{1}{ {x}^{n}}  =  -  \:  \frac{n}{ {x}^{n + 1} }}}

So, using these results, we have

\rm :\longmapsto\:0 - 32t= 50\bigg[0 +  \dfrac{30}{(x + 30)^{2} } \dfrac{dx}{dt}\bigg]

\rm :\longmapsto\: - 32t=   \dfrac{1500}{(x + 30)^{2} } \dfrac{dx}{dt}

\rm :\implies\:\dfrac{dx}{dt}  \:  =  \:  -  \: \dfrac{32t {(x + 30)}^{2} }{1500}

On substituting the values of x = 345 and t = 0.5, we get

\rm :\implies\:\dfrac{dx}{dt}  \:  =  \:  -  \: \dfrac{32(0.5) {(345 + 30)}^{2} }{1500}

\rm :\implies\:\dfrac{dx}{dt}  \:  =  \:  -  \: \dfrac{16 {(375)}^{2} }{1500}

\bf\implies \:\dfrac{dx}{dt}  \:  =  \:  -  \: 1500 \: ft \: per \: sec

Attachments:
Similar questions