Math, asked by simran70028, 9 months ago

A man goes 10 m due east and then 24 m due north. Find the distance from the starting point​

Answers

Answered by adityakumar4236
3

Answer:

distance from starting point is 26

Answered by Anonymous
6

Answer:

Let the Man Start Journey from the Middle Point A, he goes 10 metres due east to Point B and then 24 metres due North to Point C.

He Started Journey from Point A & Now he is at Point C, this forms a Right Angle Triangle.

★\underline{\bigstar\:\textsf{By Pythagoras Theorem :}}

\begin{gathered}:\implies\sf (Hypotenuse)^2 = (Perpendicular)^2+(Base)^2\\\\\\:\implies\sf (AC)^2=(BC)^2+(AB)^2\\\\\\:\implies\sf (AC)^2=(24 \:m)^2+(10 \:m)^2\\\\\\:\implies\sf (AC)^2= 576\:m^2+100\:m^2\\\\\\:\implies\sf (AC)^2=676 \:m^2\\\\\\:\implies\sf AC= \sqrt{676 \:m^2}\\\\\\:\implies\sf AC = \sqrt{26 \:m \times 26 \:m}\\\\\\:\implies\underline{\boxed{\sf AC = 26 \:m}}\end{gathered}

:⟹ </strong></p><p><strong>[tex]:⟹ AC=26m</strong></p><p><strong>[tex]:⟹ AC=26m

\therefore\:\underline{\textsf{Man is \textbf{26 m} away from starting point}}.∴

.

Similar questions