Math, asked by ewpoluy12, 5 months ago

A man is 5 times as old as his son.he will be three times as old a his after 10 years.find their present ages​

Answers

Answered by Anonymous
183

Given:-

  • At present a man is 5 times as old as his son

  • After 10 years he will be three times as old as his son

Find:-

  • Their present ages

Solution:-

  • Let, Age of a man's be 'x' yrs

  • Let, Age of a man's be 'x' yrsand age of his son's be 'y' yrs

\large{\blue{\textsf{According To Question:-}}}

A men is 5 times the age of his son

\sf \implies x = 5y\:(Equation\:1)

Now, 

After 10yrs His age will be three times the age of his son.

\sf \implies x + 10= 3(y + 10)\: (Equation\:1)

\underline{\sf Substituting\:equation \:1\:in\:equation\:2:-}

\begin{gathered}\begin{gathered} \sf \dashrightarrow x + 10= 3(y + 10) \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow (5y) + 10= 3(y + 10) \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow 5y + 10= 3y + 30 \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow 5y - 3y= 30 - 10\\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow 2y= 20\\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow y= \dfrac{20}{2}\\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \dashrightarrow y= 10yrs\\ \\ \end{gathered}\end{gathered}

\underline{\sf Substituting\:value\:of\:y\:in\:equation\:1:-}

\begin{gathered}\begin{gathered} \sf \implies x = 5y \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \implies x = 5(10) \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \sf \implies x = 50yrs\\ \\ \end{gathered}\end{gathered}

\sf \red{Therefore:-}

\underline{\boxed{\therefore \textsf{Age of a man, x = 50yrs}}}

\underline{\boxed{\therefore \textsf{Age of his son, y = 10yrs}}}

Similar questions