Physics, asked by harpreetkaur64262, 4 months ago

A man of mass 60 kg runs up a flight of 30 steps in 40 sec. if each step is 20 cm high, calculate the power of the man? ​

Answers

Answered by ajay8949
20

Mass \:  of  \: man \:  = \:  60 kg

total \: steps \: covered \:  = 30

height \: of \: each \: step \:  = 20 \: cm

height \: of \: all \: steps \: = 30 \times 20

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    :⟹ \:   600 \: cm = 6m

 \:  \:  \:  \:  \:  \:  \boxed{ \bold \red{power =  \frac{workdone}{time} } }\\

 \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  : ⟹  \:  \:  \:  \: \frac{mgh}{t}  \\ \:\:\:\:\:\:\: \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \: \green{using\: g=10m/s}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : ⟹ \:  \frac{60 \times 10 \times 6}{40}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⟹ \:  \:  \:  \:  \:  \:  \frac{3600}{40}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : ⟹ \:  \:  \:  \:  \:  \:  \: 90 \: watt

\orange{please \: mark \: as \: brainliest............}

Answered by BrainlyRonaldo
26

\bigstar Given

A man of mass 60 kg runs up a flight of 30 steps in 40 seconds

Each step is 20 cm high

\bigstar To Find

Power of the man

\bigstar Solution

We know that

\red{\sf \longrightarrow P=\dfrac{W}{t}}

\green{\sf \longrightarrow W=mgh}

Hence

Equating the values of 'W'

We get

\pink{\sf \longrightarrow P=\dfrac{W}{t}=\dfrac{mgh}{t}}

Here

  • P  = Power
  • W = Work done
  • m = Mass
  • g  = Acceleration of gravity
  • h  = Height
  • t   = Time

Units

  • P  = Watt (W)
  • W = Joule (J)
  • m = kilogram (kg)
  • g  = m/s²
  • h  = metre (m)
  • t   = seconds (s)

According to the question

We are asked to find the power of the man

Hence

We must find "P"

Therefore

\purple{\sf \longrightarrow P=\dfrac{mgh}{t}}

Given that

A man of mass 60 kg runs up a flight of 30 steps in 40 seconds

Each step is 20 cm high

Hence

  • m = 60 kg
  • h = 30 × 20 cm = 600 cm = 6 m
  • t = 40 s

We know that

  • g = 10 m/s²

Substituting the values

We get

\blue{\sf \longrightarrow P=\dfrac{60 \times 10 \times 6}{40} \ W}

\orange{\sf \longrightarrow P=\dfrac{60 \times 60}{40} \ W}

\red{\sf \longrightarrow P=\dfrac{3600}{40} \ W}

\pink{\sf \longrightarrow P=\dfrac{360}{4} \ W}

Therefore

\purple{\sf \longrightarrow P= 90 \ W}

Hence

\checkmark Power of the man = 90 W

Similar questions