Math, asked by qnabrainly124, 2 months ago

A man on the top of a rock on a seashore observes a boat coming towards it. If it takes 20 minutes for the angle of depression to change from 30 degree to 60 degree, how soon will the boat reach the shore?​

Answers

Answered by SparklingBoy
201

Let The height of rock be = h

And Other Distances As Shown on the Figure

-------------------------------

▪ Given :-

  • Time Taken by Boat to travel distance x = 10 minutes.

-------------------------------

▪ To Find :-

Time which Boat will take to Reach The Shore i.e.

Time Taken by Boat to cover distance y.

-------------------------------

▪ Solution :-

 \large  \bf In \: \: \triangle\: \:ABC

 \sf \tan30 \degree =  \dfrac{h}{x + y}  \\  \\  :\longmapsto \sf \frac{1}{ \sqrt{3} }  =  \frac{h}{x + y}  \\  \\  \bf:\longmapsto x + y = h \sqrt{3}  \:  \:  \:  \:  -  -  -  -  (i)

Now ,

 \large \bf In \: \: \triangle\: \:ABD

 \sf \tan60 \degree =  \frac{h}{y} \\  \\  \sf :\longmapsto \sqrt{3}  =  \frac{h}{y}  \\  \\  \bf:\longmapsto h = y \sqrt{3}  \:  \:  \:  \:  -  -  -  - (ii)

Putting (ii) in (i) We Get,

 \mathtt {x + y =3y } \\  \\  :\longmapsto \mathtt{x = 2y} \\  \\   \Large\purple{ :\longmapsto  \underline {\boxed{{\bf y =  \frac{x}{2} } }}}

According To Question :

Time taken by boat to travel distance x = 10 mins

Hence ,

Time Taken by Boat to travel distance x/2 = 5 mins

So ,

The Boat will take 5 minutes to travel distance y

i.e.

The boat will take 5 minutes to reach the Shore .

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Attachments:
Answered by Braɪnlyємρєяσя
170

GIVEN :

• ∠ACB= 30°, ∠ABD=60°

TO FIND :

• how soon will the boat reach the shore

CONCEPT :

• Speed is constant hence, distance is directly proportional to Time

SOLUTION :

we know that In ∆ ABC

:  \impliesTan 30°= AB/BC

:  \implies1/√3 = AB/BC

:  \impliesAB= BC/√3 eqn (i)

In ∆ ABD

:  \impliesTan 60° = AB/BD

:  \implies√3 = AB/BD

:  \impliesAB = √3 BD eqn (ii)

From the eqn (i) and (ii)

:  \implies BC/√3 = √3 BD

:  \impliesBC = 3 BD

We know that,

:  \impliesBC = BD+CD

:  \implies3 BD= BD + 10

:  \implies2 BD = 10

:  \impliesBD = 10/2

:  \impliesBD = 5

Therefore, 5 min take will the boat reach the shore

ADDITIONAL INFORMATION :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Attachments:
Similar questions