Math, asked by AhsanAzherMohammed, 3 months ago

A man sold two of his scooters at Rs.22,000 each. On one he made a gain of 10% and on other he lost 12%.Find his overall loss or gain.

Answers

Answered by Anonymous
10

 \sf{\underline{\underline{ \purple{ \large{Given}}}}}

✰ S.P of two scooters at Rs.22,000 each.

✰ Profit (gain)% on first scooter = 10%

✰ Loss% percent on first scooter = 12%

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \large{To \: Find:}}}}}

✠ Overall loss or gain.

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \large{Solution:}}}}} \\ \\ \\

Let there be two scooters X and Y

ㅤㅤㅤㅤㅤ

For scooter X,

⇰Selling price ( S.P ) = Rs. 22,000

⇰Loss% = 10%

ㅤㅤㅤㅤㅤ

Let's find out cost price ( C.P )

ㅤㅤㅤㅤㅤ

Formula:

  \sf{ \purple{\star}}{ \blue{ \large{ \underline{ \boxed{ \sf{C.P. =  \frac{100}{(100 + gain\%)}  \times S.P.}}}}}}

 \\  \\  \implies{\sf{C.P. =  \frac{100}{(100 + 10)}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{110}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{11 \cancel0}  \times 2200 \cancel0}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{ \cancel{11 }}  \times  \cancel{{2200}}^{200}  }}

\\  \\  \implies{\sf{C.P. = 100 \times 200}}

\\  \\  \implies{\sf{C.P. =  Rs. \:  20000}} \\  \\  \\

Similarly, for Scooter Y

⇰Selling price ( S.P ) = Rs. 22,000

⇰Loss% = 12%

ㅤㅤㅤㅤㅤ

Let's find out cost price ( C.P )

ㅤㅤㅤㅤㅤ

Formula:

  \sf{ \purple{\star}}{ \blue{ \large{ \underline{ \boxed{ \sf{C.P. =  \frac{100}{(100 - loss\%)}  \times S.P.}}}}}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{(100  -  12)}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{88}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{ \cancel{88}}  \times  \cancel{{22000}}^{250} }}

\\  \\  \implies{\sf{C.P. = 100 \times 250}}

\\  \\  \implies{\sf{C.P. = Rs. \: 25000}} \\ \\ \\

Now, let's find out total cost price and total selling price.

ㅤㅤㅤㅤㅤ

  • Total cost price = Rs. ( 20000 + 25000 )
  • Total cost price = Rs. 45000

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

  • Total selling price = Rs. ( 22,000 + 22,000 )
  • Total selling price = Rs. 44000

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

As C.P. > S.P. profit has occurred,

ㅤㅤㅤㅤㅤ

 \\ \sf{ \purple{ \large{ \star}{ \blue{ \large{ \underline{ \boxed{ \sf{Profit = S.P. - C.P.}}}}}}}}

 \\  \\ \implies{ \sf{Profit =Rs. \: (45000 - 44000)}}

\\  \\ \implies{ \sf{Profit =Rs.1000}} \\  \\  \\

 \sf{ \blue{ \therefore Profit \:accured} =  { \green{ \large{ \underline{ \boxed{ \sf{Rs. \: 1000}}}}}}}

ㅤㅤㅤㅤㅤ

─━━━━━━━━━──━━━━━━━━━─


Anonymous: Gr8
Answered by Flower00
1

Answer:

 \sf{\underline{\underline{ \pink{ \large{Given}}}}}

✰ S.P of two scooters at Rs.22,000 each.

✰ Profit (gain)% on first scooter = 10%

✰ Loss% percent on first scooter = 12%

 \\ \\ \\  \sf{\underline{\underline{ \pink{ \large{To \: Find:}}}}}

✠ Overall loss or gain.

 \\ \\ \\ \sf{\underline{\underline{ \pink{ \large{Solution:}}}}} \\ \\ \\

Let there be two scooters X and Y

ㅤㅤㅤㅤㅤ

For scooter X,

⇰Selling price ( S.P ) = Rs. 22,000

⇰Loss% = 10%

ㅤㅤㅤㅤㅤ

Let's find out cost price ( C.P )

ㅤㅤㅤㅤㅤ

Formula:

  \sf{ \pink{\star}}{ \pink{ \large{ \underline{ \boxed{ \sf{C.P. =  \frac{100}{(100 + gain\%)}  \times S.P.}}}}}}

 \\  \\  \implies{\sf{C.P. =  \frac{100}{(100 + 10)}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{110}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{11 \cancel0}  \times 2200 \cancel0}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{ \cancel{11 }}  \times  \cancel{{2200}}^{200}  }}

\\  \\  \implies{\sf{C.P. = 100 \times 200}}

\\  \\  \implies{\sf{C.P. =  Rs. \:  20000}} \\  \\  \\

Similarly, for Scooter Y

⇰Selling price ( S.P ) = Rs. 22,000

⇰Loss% = 12%

ㅤㅤㅤㅤㅤ

Let's find out cost price ( C.P )

ㅤㅤㅤㅤㅤ

Formula:

  \sf{ \pink{\star}}{ \pink{ \large{ \underline{ \boxed{ \sf{C.P. =  \frac{100}{(100 - loss\%)}  \times S.P.}}}}}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{(100  -  12)}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{88}  \times 22000}}

\\  \\  \implies{\sf{C.P. =  \frac{100}{ \cancel{88}}  \times  \cancel{{22000}}^{250} }}

\\  \\  \implies{\sf{C.P. = 100 \times 250}}

\\  \\  \implies{\sf{C.P. = Rs. \: 25000}} \\ \\ \\

Now, let's find out total cost price and total selling price.

ㅤㅤㅤㅤㅤ

Total cost price = Rs. ( 20000 + 25000 )

Total cost price = Rs. 45000

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Total selling price = Rs. ( 22,000 + 22,000 )

Total selling price = Rs. 44000

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

As C.P. > S.P. profit has occurred,

ㅤㅤㅤㅤㅤ

 \\ \sf{ \pink{ \large{ \star}{ \pink{ \large{ \underline{ \boxed{ \sf{Profit = S.P. - C.P.}}}}}}}}

 \\  \\ \implies{ \sf{Profit =Rs. \: (45000 - 44000)}}

\\  \\ \implies{ \sf{Profit =Rs.1000}} \\  \\  \\

 \sf{ \pink{ \therefore Profit \:accured} =  { \pink{ \large{ \underline{ \boxed{ \sf{Rs. \: 1000}}}}}}}

ㅤㅤㅤㅤㅤ

─━━━━━━━━━──━━━━━━━━━─

Similar questions