Math, asked by abhisheksheel1999, 10 months ago

A man speed is 12 km/h how many distance he covered in 2 hours 45 min

Answers

Answered by ButterFliee
70

GIVEN:

  • Speed of the man = 12 km/hr
  • Time taken by the man = 2 hr 45 min.

TO FIND:

  • What is the distance covered by the man ?

SOLUTION:

Convert the time taken by the man in hours.

  • \sf{ 1 \: hr = 60 \: minutes}
  • \sf{ 2 \: hr = 2 + \dfrac{45}{60}}
  • \sf{ 2 + \dfrac{3}{4}}
  • \sf{ \dfrac{8 +3}{4}}
  • \bf{ Time = \dfrac{11}{4} \: hr }

Let the distance covered by the man be 'D' km

We know that the formula for finding the distance covered is :-

\large{\boxed{\bf{\star \: DISTANCE = SPEED \times TIME \: \star}}}

According to question:-

On putting the given values in the formula, we get

\sf{\longmapsto D = 12 \times \dfrac{11}{4} }

\sf{\longmapsto D = \cancel\dfrac{132}{4} }

\bf{\longmapsto D = 33 \: km}

Hence, the distance covered by the man is 33 km

______________________

Answered by Anonymous
229

UR QUESTION:-

A man speed is 12 km/h how many distance he covered in 2 hours 45 min

UR ANSWER

\Large\bold\purple{given,}

 \sf\dashrightarrow  speed = 12 \dfrac{km}{hr}

 \sf\dashrightarrow  time taken(T)=2 hours\:45min

\Large\underline\bold{TO\:FIND}

 \sf\large\dashrightarrow  distance\:covered\:in\:2\:hours\:and\:45\:min

\Large\underline\bold{conversion,}

 \sf\therefore converting\:the\:time\:taken\:by\:the\:man\:in\:hours

\sf\therefore{ 1\: hr = 60 \: minutes}

\sf\implies{ 2\: hr = 2 + \dfrac{45}{60}}

\sf\implies{ 2+ \dfrac{3}{4}}

\sf\implies{ \dfrac{8 +3}{4}}

\sf\:implies{ Time = \dfrac{11}{4} \: hr }

\Large\underline\bold{solution}

A.T.Q......i.e.,.... according to the question,

 \sf\implies let\:time\:be\:denoted\:as\:T

 \sf\implies let\:distance\:be\:denoted\:as\:D

\Large\underline\bold{formula,}

 \sf\therefore distance\:covered\:= speed \times time

now,

\sf{\therefore D = 12 \times \dfrac{11}{4} }

\sf{\therefore D = \dfrac{132}{4} }

\sf{\therefore D = \cancel \dfrac{132}{4} }

\sf{\therefore D = 33 \: km}

\large{\boxed{\sf{distance=33km}}}

 \sf\therefore distance\:covered\:by\:the\:man\:in\:2hours\:45\:min\:is\:33km

________________________________

ADDITIONAL INFORMATION,

Formally the information distance ,

{\displaystyle ID(x,y)}ID(x,y) between {\displaystyle x} and {\displaystyle y} is defined by,

{\displaystyle ID(x,y)=\min\{|p|:p(x)=y\;\&\;p(y)=x\},}

ID(x,y)=\min\{|p|:p(x)=y\;\&\;p(y)=x\},

with

{\displaystyle p}

a finite binary program for the fixed universal computer with as inputs finite binary strings

 {\displaystyle x,y}.

{\displaystyle ID(x,y)=E(x,y)+O(\log \cdot \max\{K(x\mid y),K(y\mid x)\})}ID(x,y)=E(x,y)+O(\log \cdot \max\{K(x\mid y),K(y\mid x)\}) with

{\displaystyle E(x,y)=\max\{K(x\mid y),K(y\mid x)\},}E(x,y)=\max\{K(x\mid y),K(y\mid x)\},

where,

{\displaystyle K(\cdot \mid \cdot )}K(\cdot \mid \cdot ) is the Kolmogorov complexity of the prefix type.

This {\displaystyle E(x,y)}E(x,y) is\: the \:important\: quantity.

Similar questions