CBSE BOARD X, asked by Deforestation1403, 1 year ago

a man travells 370 km partly by train and partly by car. if he covers 250 km by train and the rest by car it takes him 4 hours. but if he travels 130 km by train and the rest by car he takes 14 minutes longer. find the speed of the train and that of the car

Answers

Answered by MUDITASAHU
4
Let the speed of the car be C kmph
Let the speed of the train be T kmph

4 hours = 250 km / T kmph + (370 - 250) km / C kmph

         4 = 250/T + 120/C  -- equation 1

4 hrs 18 minutes = 130 km / T kmph + (370 - 130)km / C kmph
       258/60 = 4.3 = 130 / T + 240 / C      --- equation 2

Multiply equation 1 by 2 and subtract equation 2 from it.

       8 - 4.3 = 500/T - 130/T + 240/C - 240/C

       3.7 = 370 / T

       T = 370/3.7 = 100 kmph

Substitute the value of T in equation 1 to get,

       4 = 250/T + 120/C  -- equation 1
       4 = 250/100 + 120/C
       4 - 2.5 = 120/C

       C = 120/1.5 = 80 kmph

The train runs at 100 kmph and the car runs at 80 kmph

Answered by Anonymous
32

\huge\underline\mathtt \green{SOLUTION:-}

\underline{\star\:\large{\textit{1st Case:}}}

:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{250}{Train} + \dfrac{(370 - 250)}{Car} = 4\\\\\\:\implies\tt\dfrac{250}{Train} + \dfrac{120}{Car} = 4 \qquad {\sf\dfrac{\quad}{}\:eq.(1)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\star\:\large{\textit{2nd Case:}}}

:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{(370 - 130)}{Car} = 4hr \:18min.\\\\\\:\implies\tt\dfrac{130}{Train} + \dfrac{240}{Car} = 4{}^{18}\! /{}_{60}\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{240}{Car} = \dfrac{43}{10} \qquad {\sf\dfrac{\quad}{}\:eq.(2)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\sf Let\:\:\frac{1}{Train} = x\:\:and\:\:\frac{1}{Car}=y

\underline{\textsf{Multiplying eq.(3) with 2 :}}

\longrightarrow\sf 250x +120y = 4\qquad\dfrac{\quad}{}\:eq.(3) \times 2\\\\\longrightarrow\sf 130x +240y = \dfrac{43}{10}\qquad\dfrac{\quad}{} \:eq.(4)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Subtracting eq.(4) from eq.(3) :}}

\dashrightarrow\tt\:\:500x + 240y = 8\\\\\dashrightarrow\tt\:\:130x + 240y = \dfrac{43}{10} \\ \dfrac{\qquad \qquad \qquad \qquad \qquad \quad}{}\\\dashrightarrow\tt\:\:(500x - 130x) =  \bigg(8 - \dfrac{43}{10} \bigg)\\\\\\\dashrightarrow\tt\:\:370x =  \dfrac{(80 - 43)}{10}\\\\\\\dashrightarrow\tt\:\:370x = \dfrac{37}{10}\\\\\\\dashrightarrow\tt\:\:x = \dfrac{37}{3700}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt x =\dfrac{1}{100} = \dfrac{1}{Train}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Putting value of x in eq.(3) :}}

\dashrightarrow\tt\:\:250x+120y=4\\\\\\\dashrightarrow\tt\:\:250 \times \dfrac{1}{100} + 120y = 4\\\\\\\dashrightarrow\tt\:\:\dfrac{5}{2} + 120y = 4\\\\\\\dashrightarrow\tt\:\:120y = 4 - \dfrac{5}{2}\\\\\\\dashrightarrow\tt\:\:120y =\dfrac{(8 - 5)}{2}\\\\\\\dashrightarrow\tt\:\:120y = \dfrac{3}{2}\\\\\\\dashrightarrow\tt\:\:y = \dfrac{3}{240}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt y = \dfrac{1}{80} = \dfrac{1}{Car}}}}

\begin{cases}\textsf{Speed of Train = \textbf{100 Km/hr}}\\\textsf{Speed of Car = \textbf{80 Km/hr}}\end{cases}

Similar questions