Math, asked by Aditya2602, 8 months ago

A man travels 370 km partly by train and partly by car. If he covers 250 km by
train and rest by car, if takes him 4 hours. But, if he travels 130 km by train and the rest by
car, he takes 18 minutes longer. Find the speed of the train and that of the car.​

Answers

Answered by Anonymous
48

\huge\underline\mathtt \green{SOLUTION:-}

\underline{\star\:\large{\textit{1st Case:}}}

:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{250}{Train} + \dfrac{(370 - 250)}{Car} = 4\\\\\\:\implies\tt\dfrac{250}{Train} + \dfrac{120}{Car} = 4 \qquad {\sf\dfrac{\quad}{}\:eq.(1)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\star\:\large{\textit{2nd Case:}}}

:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{(370 - 130)}{Car} = 4hr \:18min.\\\\\\:\implies\tt\dfrac{130}{Train} + \dfrac{240}{Car} = 4{}^{18}\! /{}_{60}\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{240}{Car} = \dfrac{43}{10} \qquad {\sf\dfrac{\quad}{}\:eq.(2)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\sf Let\:\:\frac{1}{Train} = x\:\:and\:\:\frac{1}{Car}=y

\underline{\textsf{Multiplying eq.(3) with 2 :}}

\longrightarrow\sf 250x +120y = 4\qquad\dfrac{\quad}{}\:eq.(3) \times 2\\\\\longrightarrow\sf 130x +240y = \dfrac{43}{10}\qquad\dfrac{\quad}{} \:eq.(4)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Subtracting eq.(4) from eq.(3) :}}

\dashrightarrow\tt\:\:500x + 240y = 8\\\\\dashrightarrow\tt\:\:130x + 240y = \dfrac{43}{10} \\ \dfrac{\qquad \qquad \qquad \qquad \qquad \quad}{}\\\dashrightarrow\tt\:\:(500x - 130x) =  \bigg(8 - \dfrac{43}{10} \bigg)\\\\\\\dashrightarrow\tt\:\:370x =  \dfrac{(80 - 43)}{10}\\\\\\\dashrightarrow\tt\:\:370x = \dfrac{37}{10}\\\\\\\dashrightarrow\tt\:\:x = \dfrac{37}{3700}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt x =\dfrac{1}{100} = \dfrac{1}{Train}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Putting value of x in eq.(3) :}}

\dashrightarrow\tt\:\:250x+120y=4\\\\\\\dashrightarrow\tt\:\:250 \times \dfrac{1}{100} + 120y = 4\\\\\\\dashrightarrow\tt\:\:\dfrac{5}{2} + 120y = 4\\\\\\\dashrightarrow\tt\:\:120y = 4 - \dfrac{5}{2}\\\\\\\dashrightarrow\tt\:\:120y =\dfrac{(8 - 5)}{2}\\\\\\\dashrightarrow\tt\:\:120y = \dfrac{3}{2}\\\\\\\dashrightarrow\tt\:\:y = \dfrac{3}{240}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt y = \dfrac{1}{80} = \dfrac{1}{Car}}}}

\begin{cases}\textsf{Speed of Train = \textbf{100 Km/hr}}\\\textsf{Speed of Car = \textbf{80 Km/hr}}\end{cases}

Similar questions