Math, asked by intelligent8978, 1 year ago

A man travels 370 km partly by train and partly by car. If he covers 250 km by train and the rest by car, it takes him 4 hours. But if he travels 130 km by train and the rest by car, it takes 18 minutes more. Find the speed of the train and that of the car.

Answers

Answered by nikhil150701
1
train speed is 100km/hr and car speed is 60 km/hr
Answered by Anonymous
3

\huge\underline\mathtt \green{SOLUTION:-}

\underline{\star\:\large{\textit{1st Case:}}}</p><p>:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{250}{Train} + \dfrac{(370 - 250)}{Car} = 4\\\\\\:\implies\tt\dfrac{250}{Train} + \dfrac{120}{Car} = 4 \qquad {\sf\dfrac{\quad}{}\:eq.(1)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\star\:\large{\textit{2nd Case:}}}</p><p>:\implies\tt \dfrac{Distance}{Train\:Speed}+\dfrac{Distance}{Car\:Speed}=Time\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{(370 - 130)}{Car} = 4hr \:18min.\\\\\\:\implies\tt\dfrac{130}{Train} + \dfrac{240}{Car} = 4{}^{18}\! /{}_{60}\\\\\\:\implies\tt \dfrac{130}{Train} + \dfrac{240}{Car} = \dfrac{43}{10} \qquad {\sf\dfrac{\quad}{}\:eq.(2)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\sf Let\:\:\frac{1}{Train} = x\:\:and\:\:\frac{1}{Car}=y

\underline{\textsf{Multiplying eq.(3) with 2 :}}

\longrightarrow\sf 250x +120y = 4\qquad\dfrac{\quad}{}\:eq.(3) \times 2\\\\\longrightarrow\sf 130x +240y = \dfrac{43}{10}\qquad\dfrac{\quad}{} \:eq.(4)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Subtracting eq.(4) from eq.(3) :}}

\dashrightarrow\tt\:\:500x + 240y = 8\\\\\dashrightarrow\tt\:\:130x + 240y = \dfrac{43}{10} \\ \dfrac{\qquad \qquad \qquad \qquad \qquad \quad}{}\\\dashrightarrow\tt\:\:(500x - 130x) =  \bigg(8 - \dfrac{43}{10} \bigg)\\\\\\\dashrightarrow\tt\:\:370x =  \dfrac{(80 - 43)}{10}\\\\\\\dashrightarrow\tt\:\:370x = \dfrac{37}{10}\\\\\\\dashrightarrow\tt\:\:x = \dfrac{37}{3700}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt x =\dfrac{1}{100} = \dfrac{1}{Train}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\underline{\textsf{Putting value of x in eq.(3) :}}

\dashrightarrow\tt\:\:250x+120y=4\\\\\\\dashrightarrow\tt\:\:250 \times \dfrac{1}{100} + 120y = 4\\\\\\\dashrightarrow\tt\:\:\dfrac{5}{2} + 120y = 4\\\\\\\dashrightarrow\tt\:\:120y = 4 - \dfrac{5}{2}\\\\\\\dashrightarrow\tt\:\:120y =\dfrac{(8 - 5)}{2}\\\\\\\dashrightarrow\tt\:\:120y = \dfrac{3}{2}\\\\\\\dashrightarrow\tt\:\:y = \dfrac{3}{240}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt y = \dfrac{1}{80} = \dfrac{1}{Car}}}}

\begin{cases}\textsf{Speed of Train = \textbf{100 Km/hr}}\\\textsf{Speed of Car = \textbf{80 Km/hr}}\end{cases}

Similar questions