Physics, asked by navyakanugula5938, 10 months ago

A man walks for some time 't' with velocity (v) due east. Then he walks for same time 't' with velocity (v) due north. The average velocity of the man is = A) 2v B)√2v
C)v C)v/√2

Answers

Answered by nirman95
35

Given:

Man walks with velocity v for sometime t due East and again towards North with velocity v for time t .

To find:

Average velocity of man

Concept:

Average velocity is defined as the ratio of the total displacement to the total time taken by the body.

Calculation:

Displacement can be calculated using Pythagoras Theorem :

Let displacement be d :

d =  \sqrt{ {(vt)}^{2}  +  {(vt)}^{2} }  = vt \sqrt{2}

Now average velocity will be :

avg. \: v =  \dfrac{total \: displacement}{total \: time}

 =  > avg. \: v =  \dfrac{vt \sqrt{2} }{t + t}

 =  > avg. \: v =  \dfrac{vt \sqrt{2} }{2t}

 =  > avg. \: v =  \dfrac{v\sqrt{2} }{2}

 =  > avg. \: v =  \dfrac{v}{ \sqrt{2} }

So final answer is :

Average Velocity is v/√2

Attachments:
Answered by Anonymous
30

Given :

Time taken travelling east = t

Velocity due East = v

Time taken travelling north = t

Velocity due north = v

To Find :

Average velocity of the man =?

Solution :

We know, displacement = velocity ×time

Therefore,

Displacement due East = vt

Displacement due north =vt

And,

Total \: Displacement =  \sqrt{ {(vt)}^{2} +  {(vt)}^{2}  }  \\   \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \sqrt{2 {v}^{2}  {t}^{2} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \sqrt{2} vt

And, total time taken = t+t =2t.

Therefore,

Average  \:  velocity   =  \frac{total \: displacement}{total \: time }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \sqrt{2} vt}{2t} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   \frac{v}{ \sqrt{2} }

Hence, correct option is (C).

Similar questions