Math, asked by hemrajgurjar2827, 3 months ago

A manufacturer of T.V. sets produced 600 sets in the third year and 700 sets in the seventh year. Assuming that
the production increases uniformly by a fixed number every year, find
(i) The production in the 1 year (ii) The production in the 10 year​

Answers

Answered by lalidevi192
0

123455678900sddgjiyrdxbjuyd

Answered by Yugant1913
15

Step-by-step explanation:

Let, increased production every year is d. Since it is same, therefore the production is increasing in arithmetic progression. Let first year production is a.

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   a_{3} = 600 \\  \:  \:  \:  \:  \:  \:  \:  \:  a_{7} = 700

Therefore, from \:  a_{n}  = a + (n - 1)d,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a_{3} = a + (3 - 1)d = 600

 ⇒\:  \:  \:  \:  \:  \:  \:  \:  \:  \: a + 2d = 600 \:  \:  \:  \:  \:  \:  -  - (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a_{7} = a + (7 - 1)d = 700

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \: a + 6d = 700

From eqns. (1) and (2)

a + 2d = 600 \\ a + 6d = 700 \\  -  \:  \:  \:  \:  \:  \:  \: -   \:  \:  \:  \:  \:  \:  \:  -    \\  - 4 =  - 100 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ (on \: subtracting)

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d =  \frac{ - 100}{ - 4}  = 25

From eqn. (1),

 \:  \:  \:  \:  \:  \:  \: a + 2 \times 25 = 600

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \: a = 600 - 50 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 550

∴ production of first year = 550 T. V.

</p><p>Production  \: in \:   {9}^{th}   \: year \:  a_{9}  = a + 8d

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 550 + 8 \times 25

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 550 + 200

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 750 \: T.V.

Production in first 7 years

From,  S_{n} =  \frac{n}{2}  [2a + (n - 1)d]

S _{7}  =  \frac{7}{2} [2 \times 550 + (7 - 1).25]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{7}{2} (1100 + 6 \times 25)

 \:  \:  \:  \:  \:  \:  \:  =  \frac{7}{2} (1100 + 150)

 \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{7}{2}  \times 1250 \\  \:  \:  \:  \:  \:  \:  \:  \:  = 7 \times 625 \\  \:  \:  \:  \:  \:  \:  \:  = 4375.

Similar questions