show that sec x + tan x is equal to root 1 + sin x upon 1 minus sin x
Answers
Answered by
1
Step-by-step explanation:
R.H.S=[√{(1+sinx)/(1-sinx)}]×[√{(1+sinx)/(1+sinx)}]. (since rationalizing denominator)
=[√{(1+sinx)(1+sinx)}]/[√{(1-sinx)(1+sinx)}]. (since √a×√b=√ab)
=[√{(1+sinx)^2}]/[√{(1^2)-(sinx^2)}. (since a×a=a^2, (a+b)(a-b)=a^2-b^2 )
=(1+sinx)/[√(1-sinx^2)]. (since √a^2=a)
=(1+sinx)/[√(cosx^2)]. (since 1-sinx^2= cosx^2)
=(1+sinx)/cosx
=(1/cosx)+(sinx/cosx) (since 1/cosx=secx, sinx/cosx=tanx)
=secx+tanx
=L.H.S
Similar questions