Physics, asked by Tonks, 9 months ago

a mass of 5kg is first weighed on a balance at the top of a tower 20m high.the mass is then suspended from a fine wire 20m long and reweighted. Find the difference in weight.Assume that the radius of earth is 6400km mass of earth is 6*10^24 and G=6.67*10^(-11)

Answers

Answered by meenavedprakash488
7

Answer:

m=5 kgm=5 kg is the mass that is initially hanigng

rE=6,400 km=6,400,000 mrE=6,400 km=6,400,000 m is the radius of the Earth

h=20 mh=20 m is the height of the tower

M=6 × 1024 kgM=6 × 1024 kg is the mass of the Earth

G=6.673 × 10−11 Nm2/kg2G=6.673 × 10−11 Nm2/kg2 is the universal gravitational constant

We can determine the weight of an object at any point by using Newton's law of gravitation:

W=GMmr2W=GMmr2

At the top of the tower, the distance between the mass and the center of the Earth is:

r1=6,400,000 m+20 m=6,400,020 mr1=6,400,000 m+20 m=6,400,020 m

When the mass is suspended from a 20 m20 m long wire, the mass can basically be treated as being on the ground. We can thus set r to just be the radius of the Earth:

r2=6,400,000 mr2=6,400,000 m

We can determine the difference in weight by subtracting the gravitational forces on the top and at the bottom of the tower:

ΔW=GMmr22−GMmr21ΔW=GMmr22−GMmr12

We substitute our values:

ΔW=(6.673 × 10−11 Nm2/kg2)(6 × 1024 kg)(5 kg)(6,400,000 m)2−(6.673 × 10−11 Nm2/kg2)(6 × 1024 kg)(5 kg)(6,400,020 m)2ΔW=(6.673 × 10−11 Nm2/kg2)(6 × 1024 kg)(5 kg)(6,400,000 m)2−(6.673 × 10−11 Nm2/kg2)(6 × 1024 kg)(5 kg)(6,400,020 m)2

We can simplify these terms:

Similar questions