Physics, asked by vaishnavie7633, 1 year ago

A metal ball 0.1m in radius is heated from 273to348Kelvin.calculate the increase in surface area of ball (given beta=3.4×10^-5/kelvin

Answers

Answered by shailendrachoubay216
11

The increase in surface area of ball is 3.2 cm^{2}.

Explanation:

1. Radius of ball (R_{o}) = 0.1 m

  So initial surface area of ball A_{o}=4\times \pi \times R_{o}^{2}

2. Increase in temperature (\Delta T)=T-T_{o}     ...1)

  where

  T = final temperature = 348 K

 T_{o} = initial temperature = 273 K

3. Final radius of ball = R

    Final surface area of ball = A

4. Area thermal expansion coefficient (\beta )= 3.4\times 10^{-5} K^{-1}

5.  Now from relation

   A= A_{o}(1+\beta \times \Delta T)      

   Which can also be written as

   A-A_{o}= A_{o}\times \beta \times \Delta T   ...2)  

6.  Increase in surface area = A-A_{o}= A_{o}\times \beta \times \Delta T

  So

  A-A_{o}= 4\times \frac{22}{7}\times 0.1^{2}\times 3.4\times 10^{-5} \times (348-273)    

 on solving

 A-A_{o}=3.2\times 10^{-4} m^{2}= 3.2 cm^{2}

Similar questions