Math, asked by RehanAhmadXLX, 1 year ago

A metallic right circular cone of 20 cm height and whose vertical angle is 60° is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter 1/16 cm, find the length of the wire.

{ALIGARH MUSLIM UNIVERSITY BOARD OF SECONDARY AND SENIOR SECONDARY EDUCATION, SAMPLE PAPER}

Attachments:

Answers

Answered by rohitkumargupta
13
HELLO DEAR,,


after pic solution

Let the length of wire =l.

Volume of wire = Area of cross-section × Length

= (πr2) (l)

\pi( { \frac{1}{32})l }^{2}


Now,

Volume of frustum = Volume of wire




\frac{22000}{9}  = \pi( { \frac{1}{32} )}^{2} l \\  =  >  \frac{22000}{9}  =  \frac{22}{7}  \times ( { \frac{1}{32}) }^{2} l \\  =  > l =  \frac{22000 \times 7 \times  {(32)}^{2} }{7 \times 9}    \\ =  > l =  \frac{7000 \times 1024}{9}  \\   =  > l =   796444.44c {m}^{2}



I HOPE ITS HELP YOU DEAR,
THANKS
Attachments:

Abhinavkarmakar1: great Bhai
Abhinavkarmakar1: superb
rohitkumargupta: thanks
Answered by smartcow1
36
Hey there,

in ΔAEG,
tan30° =  \frac{EG}{AG}
EG = AGtan30°
EG = 10 x  \frac{1}{ \sqrt{3} }  ⇒ =  \frac{10}{ \sqrt{3} } cm

In ΔABD, 
tan30° =  \frac{BD}{AD}
BD = AGtan30°
BD = 20 x  \frac{1}{ \sqrt{3} }  ⇒ RD = \frac{20}{ \sqrt{3} } cm
Radius of upper end of frustum
r =  \frac{10}{ \sqrt{3} } cm
Radius of lower end of container 
R =  \frac{20}{ \sqrt{3} } cm
Height of container
H = 10 cm
Volume of frustum
=  \frac{1}{3} AH (R² + r² + Rr)
 \frac{1}{3} A x 10 [tex]( \frac{20}{ \sqrt{3} }^2) + ( \frac{10}{ \sqrt{3} }^2) + ( \frac{20}{ \sqrt{3} })( \frac{10}{ \sqrt{3} }) [/tex]
 \frac{10}{3} x  \frac{22}{7} (  \frac{400}{3} +  \frac{100}{3} +  \frac{200}{3})
=  \frac{220}{21} ( \frac{700}{3})
=  \frac{22000}{9} cm^2
Radius of wire r₂ =  \frac{1}{2} x  \frac{1}{16} =  \frac{1}{32} cm
Let the length of wire = 1 cm
Volume of wire = area of cross-section x length
= (Rr²) x 1
=   \frac{22}{7} x ( \frac{1}{32})^2 x1
So,
Volume of frustum = volume of wire
 \frac{22000}{9} =  \frac{22}{7} x ( \frac{1}{32})^2 x1
⇒1 = 796444.44 cm
⇒1 = 7964.44 cm
Hence, length of wire will be 7964.44 cm

Hope this helps!

Attachments:
Similar questions