Math, asked by Libra786, 6 months ago

A metallic sphere of radius 10.5 cm is melted and then recast into smaller cones, each of radius 3.5 cm and height is 3 cm. How many cones are obtained ?
Help pls ..

Answers

Answered by tanujagautam107
19

Answer:

plz mark me as brainliest

Step-by-step explanation:

Volume of sphere melted= 4/3  πR ^3=4/3π×10.5 ^3

 

Volume of each cone formed =   1/3 πr^2 h=  1/3 π×(3.5) ^2 ×3

∴ Number of cones obtained =\frac{Volumeofeachconeformed}{Volumeofthespheremelted}

=\frac{( 4/3)\pi  *(10.5) ^3}{(1/3)*\pi *(3.5)^2*3}= 126

Answered by TheProphet
60

S O L U T I O N :

\underline{\bf{Given\::}}

  • Radius of metallic sphere, (r) = 10.5 cm = 21/2 cm
  • Radius of each cone, (r) = 3.5 cm = 7/2 cm
  • Height of each cone, (h) = 3 cm

\underline{\bf{Explanation\::}}

As we know that formula of the volume of sphere;

\boxed{\bf{Volume = \frac{4}{3} \pi r^{3}}}

A/q

\mapsto\tt{Volume \:of\:sphere = \dfrac{4}{3} \pi r^{3}}

\mapsto\tt{Volume \:of\:sphere =\bigg( \dfrac{4}{3} \pi \times \dfrac{21}{2} \times \dfrac{21}{2} \times \dfrac{21}{2} \bigg)}

\mapsto\tt{Volume \:of\:sphere =\bigg( \dfrac{\cancel{4}}{\cancel{3}} \pi \times \dfrac{\cancel{21}}{\cancel{2}} \times \dfrac{21}{\cancel{2}} \times \dfrac{21}{2} \bigg)}

\mapsto\tt{Volume \:of\:sphere =\bigg(\dfrac{3087}{2} \pi \bigg)cm^{3}}

&

As we know that formula of the volume of cone;

\boxed{\bf{Volume\:of\:cone = \frac{1}{3}  \pi r^{2} h}}

So,

\mapsto\tt{ Volume\:of\:cone = \frac{1}{3}  \pi r^{2} h}

\mapsto\tt{Volume \:of\:cone =\bigg( \dfrac{1}{3} \pi \times \dfrac{7}{2} \times \dfrac{7}{2} \times 3 \bigg)}

\mapsto\tt{Volume \:of\:cone =\bigg( \dfrac{1}{\cancel{3}} \pi \times \dfrac{7}{2} \times \dfrac{7}{2} \times \cancel{3} \bigg)}

\mapsto\tt{Volume \:of\:cone =\bigg( \dfrac{1}{1} \pi \times \dfrac{7}{2} \times \dfrac{7}{2} \bigg)}

\mapsto\tt{Volume \:of\:cone =\bigg( \dfrac{49 \pi}{4}\bigg)cm^{3}}

Now,

Required number of cones :

\longrightarrow\tt{\dfrac{Volume \:of\:the\:sphere }{Volume\:of\:each\:cone } }

\longrightarrow\tt{\dfrac{\dfrac{3087}{2}\pi }{\dfrac{49 \pi }{4} } }

\longrightarrow\tt{\dfrac{3087\pi}{2} \times \dfrac{4}{49 \pi} }

\longrightarrow\tt{\dfrac{\cancel{3087\pi}}{\cancel{2}} \times \dfrac{\cancel{4}}{\cancel{49 \pi}} }

\longrightarrow\tt{63 \times 2 }

\longrightarrow\bf{126\:cones }

Thus,

The 126 cones will obtained .


ItzArchimedes: Great :clapping:
Similar questions